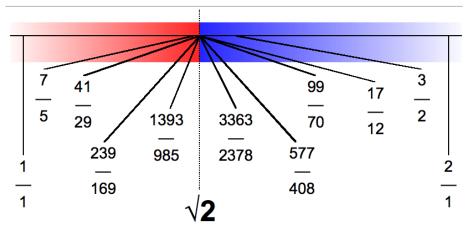
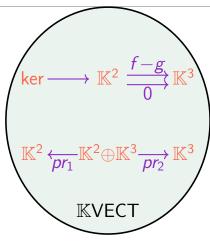
What is...a complete category?

Or: Real numbers!?



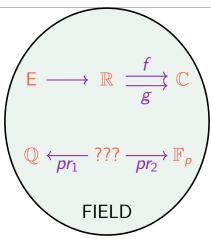
- \mathbb{Q} $\sqrt{2}$ is a not rational, but a limit of rational numbers
- \mathbb{R} $\sqrt{2}$ is a real, and a limit of real numbers
- \blacktriangleright We say ${\mathbb R}$ is complete , but ${\mathbb Q}$ is not

Vector spaces again



- ► Kernels are equalizers in KVECT
- ▶ \oplus/\prod are products in KVECT
- ► In fact, in KVECT every diagram has a limit

Fields are still ill-behaved



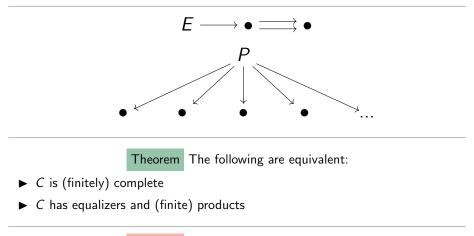
- ▶ There are equalizers in FIELD (above $E = \{s \in \mathbb{R} | f(s) = g(s)\}$)
- ► There are no products in FIELD
- ▶ In fact, in FIELD is missing quite a few limits

A category C is...

- ▶ ... (finitely) complete if it has all (finite) limits
- ▶ ... (finitely) cocomplete if it has all (finite) (co)limits
- ▶ ... (finitely) bicomplete if it is (finitely) complete and cocomplete

Up to some set-theoretical issues:

- Theorem Every category is a subcategory of a (co)complete category
- How? Yoneda embedding $C \hookrightarrow [C^{op}, SET]$
- ▶ **KVECT** is bicomplete
- ► KfdVECT is finitely bicomplete
- ► FIELD is not finitely complete nor finitely cocomplete



Theorem The following are equivalent:

- ► *C* is (finitely) cocomplete
- ► C has coequalizers and (finite) coproducts

Thank you for your attention!

I hope that was of some help.