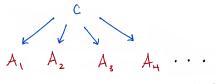

What are...limits?

Or: Universal diagrams

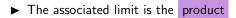
A minimal type of diagram



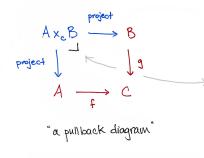
► Given a diagram *F* such as

► The limit should be a universal object/arrow minimally associated to F

Products


There are <u>no</u> maphisms between the A:. Hence "discrete".

💞 = the diagram you start with


The product (limit) of the data in red is the data in blue.

= the limit of that diagram

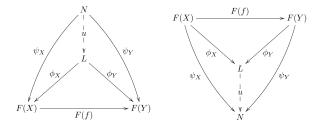
► Given the following diagram

Pullback

The pullback (limit) of the data in red is the data in blue.

> People use this little symbol to say "Hey! Not only does $A \times_c B$ fit into this diagram, it does so universally."

💗 = the diagram you start with


= the limit of that diagram

Given the following diagram

► The associated limit is the pullback

- A pair (L,ϕ) associated to a diagram $\mathcal{D}\colon J o C$ is...
- \cdot ...a limit if the universal property given by the left diagram below holds
- ...a colimit if the universal property given by the right diagram below holds

- ► These might not exists
- \blacktriangleright If they exist, then they are unique up to unique isomorphism
- ▶ The notions limit and colimit are dual

Limits everywhere

This diagram	is this functor, and	its limit is called	its colimit is called
i empty).	\mapsto	the terminal object	the initial object
Авс	••• Авс	the product	the coproduct
в ↓ А → с	$\begin{array}{cccc} \bullet & & & B \\ \downarrow & \longmapsto & \downarrow \\ \bullet \rightarrow \bullet & & & A \rightarrow c \end{array}$	the pullback	
$\begin{array}{c} C \longrightarrow B \\ \downarrow \\ A \end{array}$	$\begin{array}{ccc}\bullet \longrightarrow \bullet & & & c \longrightarrow B \\ \downarrow & & \longmapsto & \downarrow \\ \bullet & & & A \end{array}$		the pushout
$A_1 \leftarrow A_2 \leftarrow A_3 \leftarrow \cdots$	$\bullet \leftarrow \bullet \leftarrow \bullet \leftarrow \cdots \longmapsto A_1 \leftarrow A_2 \leftarrow A_3 \leftarrow \cdots$	the inverse limit	
$A_1 \longrightarrow A_2 \longrightarrow A_3 \longrightarrow \cdots$	$\bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \dots \mapsto A_1 \rightarrow A_2 \rightarrow A_3 \rightarrow \dots$		the direct limit
$A \Longrightarrow B$	$\bullet \Longrightarrow \bullet \mapsto A \rightrightarrows B$	the equalizer	the coequalizer

A lot of familiar concepts are obtained in this way!

Thank you for your attention!

I hope that was of some help.