What are...universal properties?

Or: Abstract nonsense in perfection

Tuples

- Products in SET are tuples, e.g. $\{0,1\} \times\{a\}=\{(0, a),(1, a)\}$
- Tuples have two independent components
- Question What does this imply?

Uniqueness

- Say we have $X=\{0,1,2\}$ and

$$
f_{1}:\{0,1,2\} \rightarrow\{0,1\}, 0 \mapsto 0,1 \mapsto 1,2 \mapsto 1, \quad f_{2}:\{0,1,2\} \rightarrow\{a\}, i \mapsto a
$$

- There exists a unique map such that the above diagram commutes:

$$
f:\{0,1,2\} \rightarrow\{(0, a),(1, a)\}, 0 \mapsto(0, a), 1 \mapsto(1, a), 2 \mapsto(1, a)
$$

Products are very unique

- Assume there is another product Z
- Play the glue-universal-diagrams together trick
- It follows that $Z \cong X_{1} \times X_{2}$ uniquely

For completeness: A formal definition

- $F: C \rightarrow D, X \in D$, a universal morphism from X to F is a pair $(A, u: X \rightarrow F(X))$ such that $\exists!h$ making the left diagram below commute
- $F: C \rightarrow D, X \in D$, a universal morphism from F to X is a pair
$(A, u: F(X) \rightarrow X)$ such that $\exists!h$ making the right diagram below commute

- These might not exists
- If they exist, then they are unique up to unique isomorphism

Back to products

- Take $\Delta:$ SET \rightarrow SET \times SET
- $\left(X \times Y,\left(p r_{1}, p r_{2}\right)\right)$ is a universal morphism from Δ to (X, Y)
- C $M \rightarrow$ category of interest D indexing category

Thank you for your attention!

I hope that was of some help.

