What are...products and coproducts?

Or: Vector spaces rock!

Vector spaces are nice

- Every map into $X \oplus Y$ is uniquely determined by what it does on X, Y
- Every map from $X \oplus Y$ is uniquely determined by what it does on X, Y
- No other \mathbb{K}-vector space has these properties

Sets are not quite as nice

- Every map into $X \times Y$ is uniquely determined by what it does on X, Y
- Every map from $X \amalg Y$ is uniquely determined by what it does on X, Y
- No other sets have these properties

Cobordism lack structure

- No object can split ingoing cobordisms into left and right
- No object can split outgoing cobordisms into left and right
- No object of 1 COB qualifies as a (co) product

An object $X_{1} \times X_{2} / X_{1} \amalg X_{2}$ together with arrows $\pi_{1}, \pi_{2} / i_{1}, i_{2}$ is...

- ...a product if the universal property given by the left diagram below holds
- ...a coproduct if the universal property given by the right diagram below holds
- ...a direct sum if its a product and a coproduct

- These might not exists
- If they exist, then they are unique up to unique isomorphism
- The notions product and coproduct are dual, so direct sum is self-dual

Beware infinities!

These can be defined for arbitrary many "factors", but:

- For $\mathbb{K} V E C T$ these do not agree in general
- But no worries: for finitely many factors they still agree

Thank you for your attention!

I hope that was of some help.

