
What is...category theory?

Or: Organizing ideas

Flowcharts A symbolism that allows one to organize complicated facts
Category theory A symbolism that allows one to organize complicated facts

Category theory could also be called Arrow theory

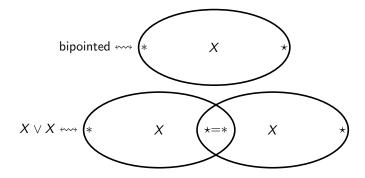
- ► In FC and C Arrows ↔ Relations between things
- ► SET Vertices=sets, arrows=maps=relations between sets

Misnomer Categories are usually named after the vertices not their arrows

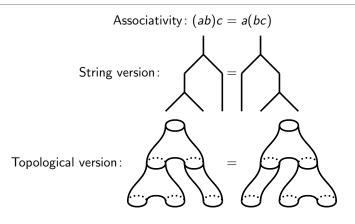
- ► Categories a.k.a. categories
 - Diagram chase
 - \triangleright Universal properties and limits
 - > The Yoneda Lemma

▷ ...

- ► Functors a.k.a. arrows between categories
 - ▷ Equivalence
 - > Adjoint functors
 - ▷ Monads
 - ▷ ...
- ▶ Natural transformations a.k.a. arrows between arrows between categories
 - ▷ 2-categories
 - ▷ Kan extensions
 - > Graphical calculus


▷ ...

Question: What makes [0, 1] special?


Idea: Find an universal property

Slogan: Universal property = why we always end up with the same concept

- ▶ [0,1] = the terminal bipointed space equipped with a map of bipointed spaces X → X ∨ X ("times 2")
- \blacktriangleright Informally [0, 1] gives path and path composition, and is universal as such

Direction two – graphical language of categories

- Diagrammatic notation is useful Relations become visually clear

Diagrammatic notation is general Generalizations of classical results

Diagrammatic notation is beautiful Very biased ;-)

Thank you for your attention!

I hope that was of some help.