What are...examples of fundamental groups?

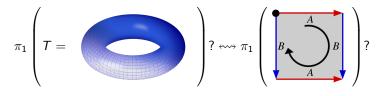
Or: One of my favorite lists

$\pi_1(S^1) \cong \mathbb{Z}$ and otherwise:

▶ One directly (pushing curves from the north pole) gets $\pi_1(S^2) \cong 1$:

▶ The same method works for any S^n as long as n > 1

Surfaces and polygons

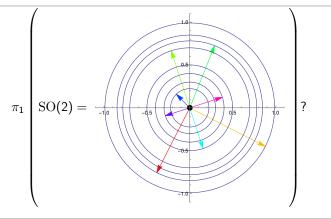


► Using Seifert-van Kampen one gets $\pi_1(T) \cong \langle A, B \mid ABA^{-1}B^{-1} \rangle \cong \mathbb{Z}^2$:

$$\begin{array}{c} \mathbf{V} \\ \mathbf{U} \\ \mathbf{V} \\ \mathbf{U} \\ \mathbf{V} \\ \mathbf$$

► The same method works for any surface given by its fundamental polygon

Topological groups



▶ $\pi_1(SO(2)) \cong \mathbb{Z}$ is commutative and loop concatenation can be described via

$$(\gamma \circ \gamma')(x) \sim \gamma(x) \cdot \gamma'(x)$$

where \cdot is matrix multiplication

► The same method works for any topological group

Here is a list of important fundamental groups

$$\pi_1(S^n) \cong egin{cases} 1 & ext{if } n > 1 \ \mathbb{Z} & ext{if } n = 1 \end{cases}$$

Torus T, real projective plane $\mathbb{R}P^2$ and Klein bottle K

Spheres S^n

 $\pi_1(\mathcal{T}) \cong \mathbb{Z}^2, \quad \pi_1(\mathbb{R}P^2) \cong \mathbb{Z}/2\mathbb{Z}, \quad \pi_1(\mathcal{K}) \cong \langle A_1, B_1, A_2, B_2 \mid A_1B_1A_1B_1^{-1} \rangle$

Orientable surfaces $M_{g,b}$ of genus g > 0 and b boundary points

$$\pi_1(M_{g,b}) \cong \langle A_1, B_1, ..., A_g, B_g, z_1, ..., z_b \mid [A_1, B_1] \cdot [A_g, B_g] = z_1 ... z_b \rangle$$

Various topological groups G/\mathbb{C} (all have commutative fundamental group)

G	\mathbb{R}	\mathbb{Q}	$\operatorname{GL}(n)$	SL(n)	SO(2)	SO(> 2)	$\operatorname{Sp}(n)$
π_1	1	1	\mathbb{Z}	1	\mathbb{Z}	$\mathbb{Z}/2\mathbb{Z}$	1

Fundamental group of a graph Γ is π₁(Γ) ≅ *_eℤ where e runs over edges not contained in a spanning tree (discussed in a previous video)

▶ Without boundary it is the same argument as before

• We also know π_1 of the *b*-times punctured disc D_b

• Compute $\pi_1(M_{g,1})$ + glue the boundary of $M_{g,1}$ with the outer boundary D_{b+1}

Thank you for your attention!

I hope that was of some help.