What is...a Cayley complex?

Or: Groups geometrically

Cayley graphs

The Cayley graph Γ_G of $G = \langle S | R \rangle$ (S generators, R relations) is the CW complex with:

- \blacktriangleright 0 cells being the elements of G
- ▶ 1 cells being edges from g to gs for $s \in S$

Observations X_G does not take *R* into account, and $\pi_1(X_G)$ is a free group

Discs and relations for $\mathbb{Z} \times \mathbb{Z} \cong \langle a, b \mid aba^{-1}b^{-1} = 1 \rangle$

- ▶ $ilde{X}_G$ is constructed by gluing discs for each $g \in G$ and $r \in R$ Discs
- G acts on \tilde{X}_G , so we obtain $X_G = \tilde{X}_G/G$ Relations

$$X_{\mathbb{Z}\times\mathbb{Z}}\simeq S^1\times S^1\simeq$$

• Covering $\tilde{X}_G \to X_G$ and $\pi_1(\tilde{X}_G) \cong 1$ gives $\pi_1(X_G) \cong G$ π_1 looks good

More discs and relations

• Covering $\tilde{X}_G \to X_G$ and $\pi_1(\tilde{X}_G) \cong 1$ gives $\pi_1(X_G) \cong G$ π_1 looks good

Given a group G by generators–relations, *i.e.* $G \cong \langle S | R \rangle$, the Cayley complex \tilde{X}_G of G is defined by:

- (a) \tilde{X}_G is 2-dimensional CW complex
- (b) The 0-cell and 1-cells form the Cayley graph Γ_{G}
- (c) For each $g \in G$ and $r \in R$ there is a 2-cell $e_{g,r}$

(d) $e_{g,r}$ is glued to Γ_G starting at g and reading along r Discs

- \tilde{X}_G has a free action of G
- ► $\pi_1(\tilde{X}_G) \cong 1$
- This gives a covering $\tilde{X}_G \to X_G = \tilde{X}_G/G$ Relations
- $\pi_1(X_G) \cong G$ π_1 looks good

Infinitely many examples

- For G = Z/2Z∗Z/2Z ≅ ⟨a, b | a² = b² = 1⟩ the Cayley complex X̃_{Z/2Z∗Z/2Z} is a chain of spheres
- Elements of $\langle ab \rangle \subset G$ act by translation on $\tilde{X}_{\mathbb{Z}/2\mathbb{Z}*\mathbb{Z}/2\mathbb{Z}}$
- Other elements act as antipodal maps on one sphere and flip the rest end-for-end
- The quotient $X_{\mathbb{Z}/2\mathbb{Z}*\mathbb{Z}/2\mathbb{Z}}$ is $\mathbb{R}P^2 \vee \mathbb{R}P^2$
- $\blacktriangleright \ \pi_1(\mathbb{R}P^2 \vee \mathbb{R}P^2) \cong \mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z}$

Any group can be realized via a Cayley complex

Thank you for your attention!

I hope that was of some help.