What are...covering space action?

Or: Deck transformations and friends

Groups in the wild

Groups naturally arise as automorphismsa.k.a. symmetriesof objects, e.g.:► Symmetry groups of the platonic solidsDice!

► Topological spaces often have symmetries, *e.g.*

Coverings are crucially related to groups, so: Question What is a relation between coverings and group actions?

Actions and coverings

- ▶ The surface M_{11} of genus 11 has a $G = \mathbb{Z}/5\mathbb{Z}$ symmetry Groups action
- ▶ Identifying along orbits gives $M_{11}/G \simeq M_3$ the surface of genus 3 Quotient

▶ M_{11} has a projection map to $M_{11}/G \simeq M_3$ Covering

Antipodes and coverings

▶ S^2 has a $G = \mathbb{Z}/2\mathbb{Z}$ symmetry given by $x \mapsto -x$ Groups action

▶ Identifying along orbits gives $S^2/G \simeq \mathbb{R}P^2$ the real projective plane Quotient

▶ S^2 has a projection map to $S^2/G \simeq \mathbb{R}P^2$ Covering

An action of a group G on a topological space X is a homomorphism

 $G \to \operatorname{Homeo}(X) = \{f : X \to X \mid f \text{ homeomorphism}\}$

Homeo(X) equals topological symmetries of X

Form a topological space X/G whose points are orbits $\{g.x \mid g \in G\}$ x is identified with all g.x

Such an action is a covering action (a good action) if

 $\forall x \in X \exists$ open neighborhood $U : g_1 . U \cap g_2 . U = \emptyset$ unless $g_1 = g_2$

- ▶ The quotient of a covering action $p: X \to X/G$ is a covering
- ► If X is additionally path-connected and locally path-connected, then $G \cong \pi_1(X/G)/p_*(\pi_1(X))$
- ▶ Special cases of good actions are Deck transformations: $f \in \text{Homeo}(\tilde{X})$ with $p \circ f = p$ for $p: \tilde{X} \to X$

Computing π_1

▶ Left case. $G = \mathbb{Z}$ acts by translation and $\pi_1(\mathbb{R}) \cong 1 \Rightarrow \pi_1(S^1) \cong \mathbb{Z}$

• Middle case. $\pi_1(M_{11})$ is an index 5 normal subgroup of $\pi_1(M_3)$

▶ Right case. $G = \mathbb{Z}/2\mathbb{Z}$ acts by antipodes and $\pi_1(S^2) \cong 1 \Rightarrow \pi_1(\mathbb{R}P^2) \cong \mathbb{Z}/2\mathbb{Z}$

Thank you for your attention!

I hope that was of some help.