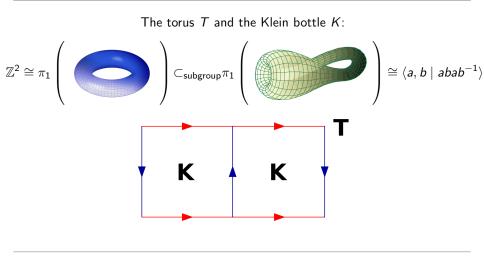
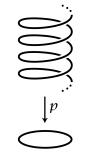
What is...a covering space?

Or: A topological Galois correspondence



Question What topology corresponds to subgroups of $\pi_1(X)$?

Helixes and circles



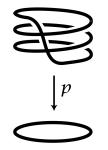
The helix \mathbb{R} covers the circle S^1 :

 $p_\infty \colon \mathbb{R} o S^1, t \mapsto \exp(2\pi i t)$

- ► Neighborhoods in R are mapped nicely to neighborhoods in S¹ Locally the same
- ► Each $z \in S^1$ has \mathbb{Z} -sheets $p^{-1}(z) \xleftarrow{``:1:1''}{\mathbb{Z}}$ Unwrapping

▶ This plays a crucial role in the calculation of $\pi_1(S^1) \cong \mathbb{Z}$ Relation to π_1

Winding around the circle S^1

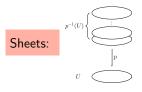


The circle S^1 covers the circle S^1 :

$$p_n: S^1 \to S^1, z \mapsto z^n$$

- Neighborhoods in S¹ are mapped nicely to neighborhoods in S¹
 Locally the same
- ► Each $z \in S^1$ has $n\mathbb{Z}$ -sheets $p^{-1}(z) \xleftarrow{``1:1''} n\mathbb{Z}$ Unwrapping
- ▶ $n\mathbb{Z}$ are precisely the non-trivial subgroups of $\mathbb{Z} \cong \pi_1(S^1)$ Relation to π_1

A covering of a topological space X is a pair (\tilde{X}, p) of a topological space \tilde{X} and a continues surjection $p: \tilde{X} \to X$ such that they are locally the same : each point $x \in X$ has an open neighborhood U with $p^{-1}(U)$ being a union of disjoint open sets (sheets), each of which is mapped homeomorphically onto U



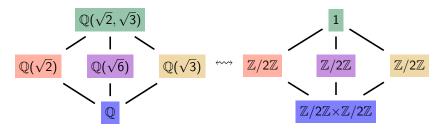
Galois correspondence For X reasonable there is a bijection

$$\left\{ \begin{matrix} \mathsf{path-connected} \\ \mathsf{coverings} \end{matrix} \right\} / \mathsf{iso.} \stackrel{1:1}{\longleftrightarrow} \left\{ \begin{matrix} \mathsf{subgroups of} \\ \pi_1(X) \end{matrix} \right\} / \mathsf{conj.}$$

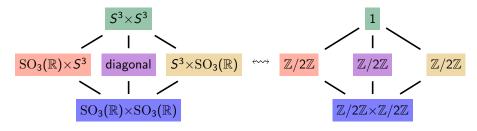
▶ The trivial cover of X is X (the "smallest cover") and corresponds to π₁(X)
 ▶ The universal cover of X (the "biggest cover") and corresponds to 1

Galois in topology

Field extensions and subgroups of the Galois group, e.g.



Covers and subgroups of the fundamental group, e.g.



Thank you for your attention!

I hope that was of some help.