What is...the Seifert–Van Kampen theorem?

Or: Cut and compute

Algebra reflects topology

In topology X is U, V glued together along $U \cap V$

$$\pi_1(X) \cong \pi_1(U) *_{\pi_1(U \cap V)} \pi_1(V)$$

In algebra $\pi_1(X)$ is $\pi_1(U), \pi_1(V)$ glued together along $\pi_1(U \cap V)$

How to make this analogy precise ?

Given two groups G and H, construct a group G * H by demanding that:

- (a) G, H are subgroups of G * H
- (b) G * H is generated by G, H
- (c) Any two homomorphisms from G and H into a group K factor uniquely through a homomorphism from G * H to K

G * H exists and is uniquely determined by these properties

▶ If $G = \langle S_G | R_G \rangle$, $H = \langle S_H | R_H \rangle$, then $G * H = \langle S_G \cup S_H | R_G \cup R_H \rangle$ G * H has the relations of G, H and nothing more

▶ If
$$G = \langle s \mid s^5 = 1 \rangle \cong \mathbb{Z}/5\mathbb{Z}$$
, $H = \langle t \mid t^4 = 1 \rangle \cong \mathbb{Z}/4\mathbb{Z}$, then $G * H = \langle s, t \mid s^5 = 1, t^4 = 1 \rangle$

▶ In particular, $\mathbb{Z}/5\mathbb{Z} * \mathbb{Z}/4\mathbb{Z}$ is infinite

U and V cover X

- ▶ Take $f = f_3 f_2 f_1$, a path in X
- Decompose it into $(f_3g_2)(g_2^{-1}f_2g_1)(g_1^{-1}f_1)$
- Each piece is contained in either U or V
- Thus, $\Phi: \pi_1(U) * \pi_1(V) \twoheadrightarrow \pi_1(X)$ Spanning
- To analyze ker(Φ) is the main meat of the Seifert–van Kampen theorem

Let X be a topological space (with a fixed base point x₀)
(a) If X is the union of path-connected open sets U_i (each containing x₀) and if each intersection U_i ∩ U_i is path-connected, then

$$\Phi\colon *_i\pi_1(U_i)\twoheadrightarrow \pi_1(X)$$

The U_i cover

(b) If additionally all $U_i \cap U_j \cap U_k$ are path-connected, then ker(Φ) is generated by $\iota_{ij}(w)\iota_{ji}^{-1}(w)$ and

$$\overline{\Phi}$$
: $*_i \pi_1(U_i) / \ker(\Phi) \xrightarrow{\cong} \pi_1(X)$

The U_i determine X

(c) Less general, but often sufficient: if X is covered by U and V (each containing x_0) such that $U \cap V \simeq$ point, then

$$\pi_1(X)\cong U*V$$

- ▶ $\iota_i : \pi_1(U_i) \to \pi_1(X)$, induced via composition by $U_i \hookrightarrow X$, give Φ
- ▶ ι_{ij} : $\pi_1(U_i \cap U_j) \rightarrow \pi_1(X)$ induced via composition by $U_i \cap U_j \hookrightarrow X$

Fundamental groups of graphs

lnput. $\pi_1(\text{circle}) \cong \mathbb{Z}$

- ▶ $\pi_1(\text{graph}) \cong *_e \mathbb{Z}$, where *e* runs over edges not contained in a spanning tree T
- ▶ Proof. $T \simeq$ point, $(T \cup e) \simeq$ circle, use Seifert-van Kampen

Thank you for your attention!

I hope that was of some help.