What is...the Seifert-Van Kampen theorem?

Or: Cut and compute

Algebra reflects topology

$$
\pi_{1}(X) \cong \pi_{1}(U) *_{\pi_{1}(U \cap V)} \pi_{1}(V)
$$

In algebra $\pi_{1}(X)$ is $\pi_{1}(U), \pi_{1}(V)$ glued together along $\pi_{1}(U \cap V)$

How to make this analogy precise ?

The free product *

Given two groups G and H, construct a group $G * H$ by demanding that:
(a) G, H are subgroups of $G * H$
(b) $G * H$ is generated by G, H
(c) Any two homomorphisms from G and H into a group K factor uniquely through a homomorphism from $G * H$ to K

$$
G * H \text { exists and is uniquely determined by these properties }
$$

- If $G=\left\langle S_{G} \mid R_{G}\right\rangle, H=\left\langle S_{H} \mid R_{H}\right\rangle$, then $G * H=\left\langle S_{G} \cup S_{H} \mid R_{G} \cup R_{H}\right\rangle$
$G * H$ has the relations of G, H and nothing more
- If $G=\left\langle s \mid s^{5}=1\right\rangle \cong \mathbb{Z} / 5 \mathbb{Z}, H=\left\langle t \mid t^{4}=1\right\rangle \cong \mathbb{Z} / 4 \mathbb{Z}$, then $G * H=\left\langle s, t \mid s^{5}=1, t^{4}=1\right\rangle$
- In particular, $\mathbb{Z} / 5 \mathbb{Z} * \mathbb{Z} / 4 \mathbb{Z}$ is infinite

- Take $f=f_{3} f_{2} f_{1}$, a path in X
- Decompose it into $\left(f_{3} g_{2}\right)\left(g_{2}^{-1} f_{2} g_{1}\right)\left(g_{1}^{-1} f_{1}\right)$
- Each piece is contained in either U or V
- Thus, $\Phi: \pi_{1}(U) * \pi_{1}(V) \rightarrow \pi_{1}(X)$ Spanning
- To analyze $\operatorname{ker}(\Phi)$ is the main meat of the Seifert-van Kampen theorem

For completeness: A formal statement

Let X be a topological space (with a fixed base point x_{0})
(a) If X is the union of path-connected open sets U_{i} (each containing x_{0}) and if each intersection $U_{i} \cap U_{j}$ is path-connected, then

$$
\Phi: *_{i} \pi_{1}\left(U_{i}\right) \rightarrow \pi_{1}(X)
$$

The U_{i} cover
(b) If additionally all $U_{i} \cap U_{j} \cap U_{k}$ are path-connected, then $\operatorname{ker}(\Phi)$ is generated by $\iota_{i j}(w) \iota_{j i}^{-1}(w)$ and

$$
\bar{\Phi}: *_{i} \pi_{1}\left(U_{i}\right) / \operatorname{ker}(\Phi) \xrightarrow{\cong} \pi_{1}(X)
$$

The U_{i} determine X
(c) Less general, but often sufficient: if X is covered by U and V (each containing x_{0}) such that $U \cap V \simeq$ point, then

$$
\pi_{1}(X) \cong U * V
$$

- $\iota_{i}: \pi_{1}\left(U_{i}\right) \rightarrow \pi_{1}(X)$, induced via composition by $U_{i} \hookrightarrow X$, give Φ
- $\iota_{i j}: \pi_{1}\left(U_{i} \cap U_{j}\right) \rightarrow \pi_{1}(X)$ induced via composition by $U_{i} \cap U_{j} \hookrightarrow X$

Fundamental groups of graphs

- Input. $\pi_{1}($ circle $) \cong \mathbb{Z}$
- $\pi_{1}($ graph $) \cong *_{e} \mathbb{Z}$, where e runs over edges not contained in a spanning tree T
- Proof. $T \simeq$ point, $(T \cup e) \simeq$ circle, use Seifert-van Kampen

Thank you for your attention!

I hope that was of some help.

