What is...the fundamental group?

Or: How not to hang pictures on walls

We need an invariant

Winding around the circle S^1

- \blacktriangleright Winding around a circle has a group structure the one of $\mathbb Z$
- \blacktriangleright Winding clockwise once $\longleftrightarrow +1 \in \mathbb{Z}$
- \blacktriangleright Winding anticlockwise once $\leadsto -1 \in \mathbb{Z}$
- ▶ The group \mathbb{Z} is a homotopy invariant of S^1

- The group π_1 associated to the disc with a hole is \mathbb{Z}
- The group π_1 associated to the disc with two holes is F_2 (free group in two generators)
- \blacktriangleright These groups are not isomorphic \Rightarrow the spaces are not homotopic Invariance

For a topological space X take loops $\gamma \colon [0,1] \to X$ based at $\star \in X$

(a) Let $\pi_1(X, \star)$ be the set of equivalence classes of loops based at \star modulo homotopy

(b) $\pi_1(X, \star)$ has a group structure given by concatenation

- ▶ Slight catch. This is only a group structure by using homotopy
- ► For path connected X we have $\pi_1(X, \star) \cong \pi_1(X, \star)$ Write $\pi_1(X)$

• path in
$$\pi_1(X,\star)$$
 • path in $\pi_1(X,\star)$ • path in $\pi_1(X,\star)$

• $(X \simeq Y) \Rightarrow (\pi_1(X) \cong \pi_1(Y))$ Invariance

Using two nails works, using one fails

Thank you for your attention!

I hope that was of some help.