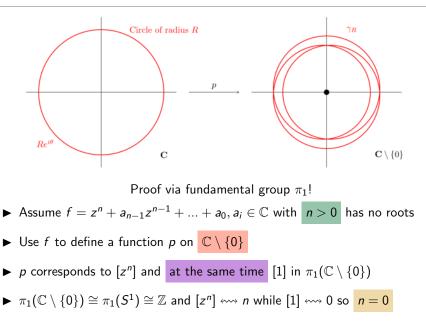
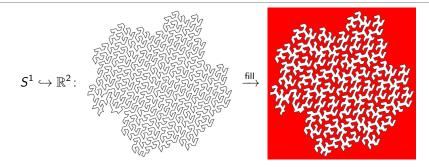
What are...some applications of topology?

Or: Applications 1 (topology in mathematics).

The fundamental theorem of algebra



Jordan–Brouwer separation theorem



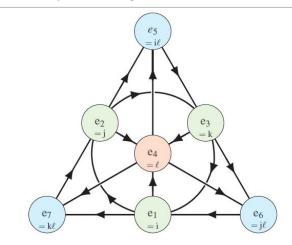
Proof via (co)homology H_*, H^* and Alexander duality!

- Every embedding of $S^{n-1} \hookrightarrow \mathbb{R}^n$ divides \mathbb{R}^n in interior and exterior
- ▶ This theorem is far from being obvious, *e.g.* mind space-filling curves
- ▶ The proof via Alexander duality (replacing \mathbb{R}^n by S^n)

$$\left(\tilde{H}_0(S^n \setminus \iota(S^{n-1})) \xrightarrow{\cong} \tilde{H}^{n-1}(S^{n-1}) \cong \mathbb{Z}\right) \Rightarrow \left(\dim \tilde{H}_0(S^n \setminus \iota(S^{n-1}), \mathbb{Q}) = 1\right)$$

is general and "straightforward"

The only division algebras over $\mathbb R$ are $\mathbb R,\mathbb C,\mathbb H,\mathbb O$

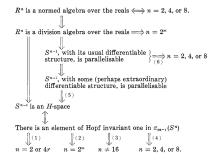


Proof via the cohomology ring H^{\bullet} !

- ▶ \mathbb{R}^n is a normed algebra only for n = 1, 2, 4, 8
- ▶ The proof uses the Hopf invariant of maps $f: S^m \to S^n$ obtained from H^\bullet
- ► This is a topological proof of a purely algebraic statement

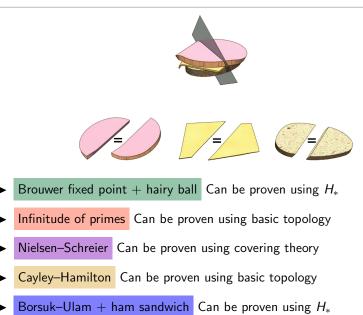
For completeness: A formal statement

There is a whole zoo of very similar statements:



- The case n = 1 is exceptional (but easy) and usually excluded
- ▶ Some of the statements above are algebraic some topological in nature
- ► Beware "The only division algebras over R are R, C, H, O" does not quite follow and needs some extra work/reformulation

Honorable mentions



► Many more...

Thank you for your attention!

I hope that was of some help.