What is...the Hurewicz theorem?

Or: Homotopy and homology

Homotopy and homology: spheres

- $\pi_{<n}\left(S^{n}\right)$ is trivial, $\pi_{n}\left(S^{n}\right) \cong \mathbb{Z}, \pi_{>n}\left(S^{n}\right)$ is mysterious
- $\tilde{H}_{<n}\left(S^{n}\right)$ is trivial, $H_{n}\left(S^{n}\right) \cong \mathbb{Z}, H_{>n}\left(S^{n}\right)$ is trivial
- Hopeless(?) question Is there any relationship between π_{*} and H_{*} ?

Homotopy and homology: tori

- $\pi_{0}\left(T^{n}\right)$ is trivial, $\pi_{1}\left(T^{n}\right) \cong \mathbb{Z}^{n}, \pi_{>1}\left(T^{n}\right)$ is trivial
- $\tilde{H}_{0}\left(T^{n}\right)$ is trivial, $H_{1}\left(T^{n}\right) \cong \mathbb{Z}^{n}, H_{>n}\left(T^{1}\right)$ is given by the binomial theorem
- Hopeless(?) question Is there any relationship between π_{*} and H_{*} ?

The connecting notion

n-connected: X is non-empty, path-connected, and $\pi_{\leq n}(X)$ is trivial

- X is (-1)-connected if and only if it is non-empty
- X is 0 -connected if and only if it is non-empty and path-connected
- X is 1 -connected if and only if it is simply connected

For completeness: A formal statement

For every $n>0$ there exists a group homomorphism

$$
h_{*}: \pi_{n}(X) \rightarrow H_{n}(X)
$$

If X is $(n-1)$-connected, $n>1$, then h_{*} is an isomorphism :

$$
h_{*}: \pi_{n}(X) \stackrel{\cong}{\rightrightarrows} H_{n}(X)
$$

Moreover, it also follows that $\tilde{H}_{<n}(X) \cong 0$
Corollary: homological version of Whitehead's theorem For simply connected cell complexes X, Y and $f: X \rightarrow Y$ the following are equivalent:

- $f: X \rightarrow Y$ is a homotopy equivalence
- $f_{*}: H_{*}(X) \rightarrow H_{*}(Y)$ is an isomorphism

Wait: the torus doesn't really fit

T^{n} : 0-connected; Hurewicz wants at least 2-connected
There is a small-number-coincidence in Hurewicz theorem:

- In general h_{*} is neither injective nor surjective
- For $n=1$ it is always surjective
- For $n=1$ the kernel is always $\left[\pi_{1}(X), \pi_{1}(X)\right.$], thus:

$$
\tilde{h}_{*}: \pi_{1}(X) /\left[\pi_{1}(X), \pi_{1}(X)\right] \stackrel{\cong}{\rightrightarrows} H_{1}(X)
$$

Thank you for your attention!

I hope that was of some help.

