What is...the Hurewicz theorem?

Or: Homotopy and homology

Homotopy and homology: spheres

- ▶ $\pi_{<n}(S^n)$ is trivial, $\pi_n(S^n) \cong \mathbb{Z}$, $\pi_{>n}(S^n)$ is mysterious
- ▶ $\tilde{H}_{< n}(S^n)$ is trivial, $H_n(S^n) \cong \mathbb{Z}$, $H_{> n}(S^n)$ is trivial

• Hopeless(?) question Is there any relationship between π_* and H_* ?

Homotopy and homology: tori

- ▶ $\pi_0(T^n)$ is trivial, $\pi_1(T^n) \cong \mathbb{Z}^n$, $\pi_{>1}(T^n)$ is trivial
- ▶ $\tilde{H}_0(T^n)$ is trivial, $H_1(T^n) \cong \mathbb{Z}^n$, $H_{>n}(T^1)$ is given by the binomial theorem

• Hopeless(?) question Is there any relationship between π_* and H_* ?

The connecting notion

 S^n : (n-1)-connected

 T^n : 0-connected

n-connected: X is non-empty, path-connected, and $\pi_{\leq n}(X)$ is trivial

- X is (-1)-connected if and only if it is non-empty
- \blacktriangleright X is 0-connected if and only if it is non-empty and path-connected
- ► X is 1-connected if and only if it is simply connected

For every n > 0 there exists a group homomorphism $h_* : \pi_n(X) \to H_n(X)$ If X is (n-1)-connected, n > 1, then h_* is an isomorphism : $h_* : \pi_n(X) \xrightarrow{\cong} H_n(X)$ Moreover, it also follows that $\widetilde{H}_{< n}(X) \cong 0$

Corollary: homological version of Whitehead's theorem For simply connected cell complexes X, Y and $f: X \to Y$ the following are equivalent:

- $f: X \to Y$ is a homotopy equivalence
- $f_*: H_*(X) \to H_*(Y)$ is an isomorphism

Wait: the torus doesn't really fit

Tⁿ: 0-connected; Hurewicz wants at least 2-connected

There is a small-number-coincidence in Hurewicz theorem:

- ▶ In general h_* is neither injective nor surjective
- ▶ For n = 1 it is always surjective

▶ For n = 1 the kernel is always $[\pi_1(X), \pi_1(X)]$, thus:

 $\tilde{h}_* \colon \pi_1(X)/[\pi_1(X), \pi_1(X)] \xrightarrow{\cong} H_1(X)$

Thank you for your attention!

I hope that was of some help.