What are...Eilenberg-MacLane spaces?

Or: They are not spheres

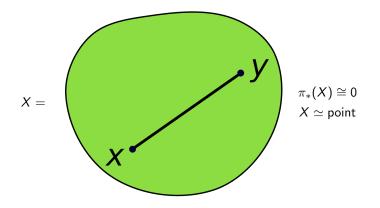
Homotopy groups are hard

	π_1	π_2	π_3	π_4	π_5	π_6	π_7	π_8	π_9	π_{10}	π_{11}	π_{12}	π_{13}	π_{14}
S^0	0	- 0	0	0	0	0	0	0	0	0	0	0	0	0
S^1	Z	0	0	0	0	0	0	0	0	0	0	0	0	0
S^2	0	Z	\mathbb{Z}	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/12$	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/3$	$\mathbb{Z}/15$	$\mathbb{Z}/2$	$(\mathbb{Z}/2)^2$	$\mathbb{Z}/2 \times \mathbb{Z}/12$	$(\mathbb{Z}/2)^2 \times \mathbb{Z}/84$
S^3	0	0	Z	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/12$	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/3$	$\mathbb{Z}/15$	$\mathbb{Z}/2$	$(\mathbb{Z}/2)^2$	$\mathbb{Z}/2 \times \mathbb{Z}/12$	$(\mathbb{Z}/2)^2 \times \mathbb{Z}/84$
S^4	0	0	0	Z	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z} \times \mathbb{Z}/12$	$(\mathbb{Z}/2)^2$	$(\mathbb{Z}/2)^2$	$\mathbb{Z}/3 \times \mathbb{Z}/24$	$\mathbb{Z}/15$	$\mathbb{Z}/2$	$(\mathbb{Z}/2)^{3}$	$\mathbb{Z}/2 \times \mathbb{Z}/12 \times \mathbb{Z}/120$
S^5	- 0	0	0	0	Z	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/24$	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/30$	$\mathbb{Z}/2$	$(\mathbb{Z}/2)^{3}$
S^6	0	- 0	0	0	0	Z	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/24$	0	Z	$\mathbb{Z}/2$	$\mathbb{Z}/60$	$\mathbb{Z}/2 \times \mathbb{Z}/24$
S^7	0	0	- 0	0	0	0	\mathbb{Z}	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/24$	0	0	$\mathbb{Z}/2$	$\mathbb{Z}/120$
S^8	-0	0	0	0	0	0	0	Z	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/24$	0	0	$\mathbb{Z}/2$
S^9	0	0	0	0	0	0	0	0	Z	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/24$	0	0
S^{10}	0	0	0	0	0	0	0	0	0	Z	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/24$	0
S^{11}	0	0	0	0	0	0	0	0	0	0	Z	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/24$
S^{12}	0	0	0	0	0	0	0	0	0	0	0	Z	$\mathbb{Z}/2$	$\mathbb{Z}/2$
S^{13}	0	0	0	0	0	0	0	0	0	0	0	0	\mathbb{Z}	$\mathbb{Z}/2$
S^{14}	0	- 0	0	0	0	0	0	0	0	0	0	0	0	\mathbb{Z}

- ▶ $\pi_*(S^n)$ is not known (as in 2021) for n > 1
- Only few results regarding $\pi_*(S^n)$ are known, *e.g.*

 $\pi_n(S^2)$ is trivial $\Leftrightarrow n = 1$

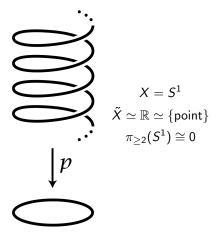
Hopeless(?) question Is there any non-trivial space for which we know π_* ?



- \blacktriangleright Whitehead's theorem basically says that π_* determines cell complexes
- ► This is in particular true for cell complexes with concentrated homotopy

• Focus on cell complexes with almost all $\pi_n \cong 0$

We know examples!



▶ For any universal cover $\tilde{X} \to X$ we have $\pi_{\geq 2}(\tilde{X}) \cong \pi_{\geq 2}(X)$

▶ Thus, $\tilde{X} \simeq \{\text{point}\}$ implies concentrated homotopy

▶ The spaces are called K(G, 1)-spaces and play important roles

For every n, G (abelian for n > 1) there exists a cell complex K(G, n) such that:

$$\pi_n(\mathcal{K}(G,n)) \cong G$$
, and $\pi_k(\mathcal{K}(G,n)) \cong 0$ otherwise

Very concentrated homotopy

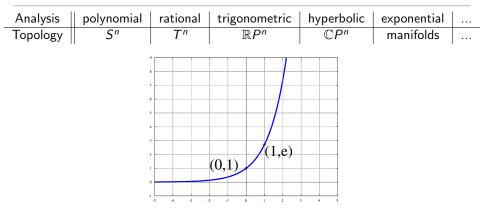
- K(G, n) can be combinatorially constructed from G Existence
- Every cell complex X with

$$\pi_n(X) \cong G$$
, and $\pi_k(X) \cong 0$ otherwise

is \simeq to K(G, n) Uniqueness

• K(G, n) represents $H^n(_, G)$ Importance

Homology doesn't like algebraic topology!?



- ► K(Z,1) ≅ S¹, K(Z/2Z,1) ≅ RP[∞], many 3-manifolds appear as K(G,1), and many more!
- ▶ $K(\mathbb{Z},2) \cong \mathbb{C}P^{\infty}$ and nothing more?

▶ Almost none of the elementary functions of topology appear as $K(G, \ge 2)$

Thank you for your attention!

I hope that was of some help.