What is...cellular approximation?

Or: I miss my space-filling curves...

Avoiding a point...

- ▶ Goal Show $\pi_k(S^n) \cong 0$ for k < n
 - Strategy Poke a hole into S^n and contract the rest along with $S^k o S^n$
 - Catch Need to show that any $S^k \to S^n$ misses a point

- Beware Space-filling curves exist
- ► We can still avoid a point
- ▶ "We can avoid a point" is a quite general statement

The torus with a fixed cell structure

▶ Most maps $S^1 \rightarrow T$ are not contained in the 1-skeleton T^1

▶ But all maps $S^1 \rightarrow T$ are homotopic to either •, *a*, *b*

For completeness: A formal statement

- ▶ Take the balloon cell structure on S^n One 0- and one *n*-cell
- ▶ $S^k \rightarrow S^n$ can be assumed to end in the *k*-skeleton of S^n
- The k-skeleton of S^n is trivial for k < n Done!

Thank you for your attention!

I hope that was of some help.