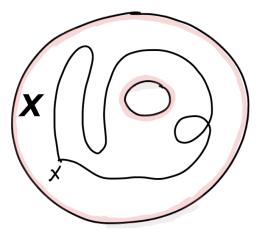
What are...homotopy groups?

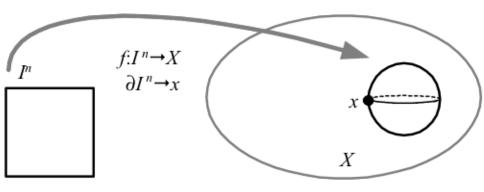
Or: Spheres in spaces

Loops in spaces



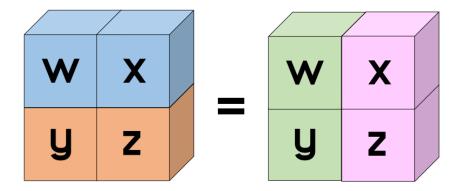
▶ The fundamental group measures how one can arrange loops in spaces

▶ Formally, maps $f: [0,1] \rightarrow X$ such that f(0) = f(1) Ends glued



- ▶ The homotopy group π_n measures how one can arrange *n*-spheres in spaces
- ▶ Formally, maps $f: [0,1]^n \to X$ such that $f(\delta[0,1]^n) = x$ Boundary glued

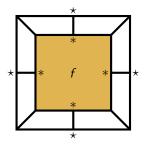
▶ Note that the fundamental group is the case n = 1 S^1 is a loop



- "Putting sphere f first, and then sphere g" gives a multiplication
- ▶ The Eckmann–Hilton argument shows that this is commutative for $n \ge 2$
- ▶ "Classical operations are 1-dimensional , and commutativity is lost"

For a topological space X take spheres $f: [0,1]^n \to X$ based at $\star \in X$, *i.e.* $f(\delta[0,1]^n) = \star$ (a) Let $\pi_n(X, \star)$ be the set of equivalence classes of spheres based at \star modulo homotopy (b) $\pi_n(X, \star)$ has a group structure given by concatenation

- ▶ Slight catch. This is only a group structure by using homotopy
- ► For path connected X we have $\pi_n(X, \star) \cong \pi_n(X, \star)$ Write $\pi_n(X)$



•
$$(X \simeq Y) \Rightarrow (\pi_n(X) \cong \pi_n(Y) \text{ for all } n)$$
 Invariance

Easier than the fundamental groups? No!

	π1	π2	π3	π4	π_5	π ₆	π7	π8	π9	π ₁₀	π ₁₁	π ₁₂	π ₁₃	π ₁₄	π ₁₅
S ⁰	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S1	Z	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\$ ²	0	Z	Z	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_3	\mathbb{Z}_{15}	\mathbb{Z}_2	\mathbb{Z}_2^2	$\mathbb{Z}_{12} \times \mathbb{Z}_2$	$\mathbb{Z}_{84}\!\!\times\!\!\mathbb{Z}_2^2$	\mathbb{Z}_2^2
S ³	0	0	Z	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_3	Z ₁₅	\mathbb{Z}_2	\mathbb{Z}_2^2	$\mathbb{Z}_{12} \times \mathbb{Z}_2$	$\mathbb{Z}_{84}\!\!\times\!\!\mathbb{Z}_2^2$	\mathbb{Z}_2^2
S ⁴	0	0	0	Z	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z} \times \mathbb{Z}_{12}$	\mathbb{Z}_2^2	\mathbb{Z}_2^2	$\mathbb{Z}_{24} \times \mathbb{Z}_3$	\mathbb{Z}_{15}	\mathbb{Z}_2	\mathbb{Z}_2^3	$\mathbb{Z}_{120} \times \mathbb{Z}_{12} \times \mathbb{Z}_2$	$\mathbb{Z}_{84}\!\!\times\!\!\mathbb{Z}_2^5$
S ⁵	0	0	0	0	Z	\mathbb{Z}_2	Z2	\mathbb{Z}_{24}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_2	Z ₃₀	Z2	\mathbb{Z}_2^3	$\mathbb{Z}_{72} \times \mathbb{Z}_2$
S ⁶	0	0	0	0	0	Z	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0	Z	\mathbb{Z}_2	Z ₆₀	$\mathbb{Z}_{24} \times \mathbb{Z}_2$	\mathbb{Z}_2^3
S ⁷	0	0	0	0	0	0	Z	\mathbb{Z}_2	\mathbb{Z}_2	Z ₂₄	0	0	\mathbb{Z}_2	Z ₁₂₀	\mathbb{Z}_2^3
S ⁸	0	0	0	0	0	0	0	Z	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0	0	\mathbb{Z}_2	$\mathbb{Z} \times \mathbb{Z}_{120}$

► The south west part is "obvious" Not exciting

► The north east part is still mostly unknown

▶ Not even all $\pi_n(S^2)$ are known Even computing $\pi_3(S^2)$ is a challenge

Thank you for your attention!

I hope that was of some help.