What is...Alexander duality?

Or: Horned spheres!?

A harmless sounding statement...

... is not harmless at all!

A sphere S^2 embedded in \mathbb{R}^3 divides \mathbb{R}^3 into an inside and an outside. Really?

The more one thinks about it, the less clear it becomes!

A homological formulation

- ▶ We can replace \mathbb{R}^3 with S^3 Stereographic Projection
- ▶ The number of connected component of $S^3 \setminus \iota(S^2)$ is dim $H_0(S^3 \setminus \iota(S^2))$
- ► Hence, reduced homology should satisfy

 $\dim \tilde{H}_0\bigl(S^3\setminus\iota(S^2),\mathbb{Q}\bigr)=1$

▶ So we need to compute dim $ilde{H}_0ig(S^3 \setminus \iota(S^2), \mathbb{Q}ig)$

If $\emptyset \subsetneq K \subsetneq S^n$ is a compact and locally contractible, then

$$ilde{H}_i(S^n \setminus K) \xrightarrow{\cong} ilde{H}^{n-i-1}(K)$$

• This only depends on intrinsic properties of K

▶ For
$$K = \iota(S^{n-1}) \cong S^{n-1}$$
 one gets

$$ilde{H}_0(S^n\setminus S^{n-1})\stackrel{\cong}{ o} ilde{H}^{n-1}(S^{n-1})\cong \mathbb{Z}$$

► Thus, we get

$$\dim \tilde{H}_0(S^n \setminus \iota(S^{n-1}), \mathbb{Q}) = 1$$

► This is a consequence of (the a bit more general)

$$H_i(M, M \setminus K) \xrightarrow{\cong} H^{n-i}(K)$$

where M is closed orientable *n*-manifold and where $K \subset M$ is compact and locally contractible

Knots? Not quite...

- ▶ A knot K is an embedding $S^1 \hookrightarrow S^3 \rightsquigarrow$ thickened into a torus $\overline{K} \cong T$ A rope
- ► One gets

$$\widetilde{H}_i(S^n \setminus \overline{K}) \xrightarrow{\cong} \widetilde{H}^{n-i-1}(\overline{K}) \cong \widetilde{H}^{n-i-1}(T)$$

► This does not depend on the embedding, so can not distinguish knots

Thank you for your attention!

I hope that was of some help.