What is...Poincaré duality?

Or: My face is 0-dimensional

Kepler's Harmonices Mundi ~1619

▶ The dual of a tetrahedron is a tetrahedron

► The dual of a cube is a octahedron

► The dual of a dodecahedron is a icosahedron

Dual graph

The dual G^* of a plane graph G_* is obtained by reversing dimensions :

- ▶ G^* has a vertex for each face of G_*
- G^* has an edge for each edge of G_* ; connecting adjacent faces
- G^* has a face for each vertex of G_*

Dual Euler characteristic

▶ Similarly, for any cell complex X_* one can define a dual cell complex X^*

What happens on (co)homology?

If *M* is an orientable closed *n*-manifold, then for $0 \le k \le n$:

$$[M]\frown_:H^k(M)\xrightarrow{\cong} H_{n-k}(M)$$

 \blacktriangleright Here — is the pairing

$$_\frown_: H_k(M) \times H^{l}(M) \to H_{k-l}(M), \sigma \frown \phi = \phi(\sigma | [v_0, ..., v_l]) \sigma | [v_l, ..., v_k]$$

▶ There are many generalization, *e.g.* relaxing "orientable" or "closed"

This implies that the Hilbert–Poincaré polynomial of *M* is palindromic :

$$P\left(\bigcirc\right) = 1 + t \iff 1 _ t$$

$$P\left(\bigcirc\right) = 1 + 2t + t^{2} \iff 1 _ 2t _ t^{2}$$

$$P\left(\mathbb{C}P^{6}\right) = 1 + t^{2} + t^{4} + t^{6} \iff 1 _ 0 _ t^{2} _ 0 _ t^{4} _ 0 _ t^{6}$$

Wait! How do you see the palindromic property?

The universal coefficient theorem (UCT) for cohomology for all X and PID R:

$$0
ightarrow \operatorname{Ext}ig(H_{k-1}(X),Rig)
ightarrow H^k(X,R)
ightarrow \operatorname{\mathsf{hom}}ig(H_k(X),Rig)
ightarrow 0$$

is a split (non-naturally) short exact sequence

► Thus, in general

$$H^k(X) \cong \operatorname{hom} \left(H_k(X), \mathbb{Z} \right) \oplus \operatorname{Ext} \left(H_{k-1}(X), \mathbb{Z} \right)$$

▶ Ext vanishes over \mathbb{Q} and hom $(H_k(X), \mathbb{Q}) \cong H_k(X, \mathbb{Q})$ if finite, which implies

$$H_k(M,\mathbb{Q})\cong H^k(M,\mathbb{Q})$$

Paste this together with Poincaré duality :

$$H_k(M,\mathbb{Q})\cong H^k(M,\mathbb{Q})\cong H_{n-k}(M,\mathbb{Q})$$

Thank you for your attention!

I hope that was of some help.