What is...Poincaré duality?

Or: My face is 0-dimensional

- The dual of a tetrahedron is a tetrahedron
- The dual of a cube is a octahedron
- The dual of a dodecahedron is a icosahedron

What does this mean?

Dual graph

The dual G^{*} of a plane graph G_{*} is obtained by reversing dimensions:

- G^{*} has a vertex for each face of G_{*}
- G^{*} has an edge for each edge of G_{*}; connecting adjacent faces
- G^{*} has a face for each vertex of G_{*}

Dual Euler characteristic

- Similarly, for any cell complex X_{*} one can define a dual cell complex X^{*}
- We have $\chi\left(X_{*}\right)= \pm \chi\left(X^{*}\right)$ since

What happens on (co)homology?

If M is an orientable closed n-manifold, then for $0 \leq k \leq n$:

$$
[M] \frown_{-}: H^{k}(M) \stackrel{\cong}{\leftrightarrows} H_{n-k}(M)
$$

- Here \frown is the pairing

$$
{ }_{-} \frown_{-}: H_{k}(M) \times H^{\prime}(M) \rightarrow H_{k-l}(M), \sigma \frown \phi=\phi\left(\sigma \mid\left[v_{0}, \ldots, v_{l}\right]\right) \sigma \mid\left[v_{l}, \ldots, v_{k}\right]
$$

- There are many generalization, e.g. relaxing "orientable" or "closed"

This implies that the Hilbert-Poincaré polynomial of M is palindromic:

$$
\begin{gathered}
P(\bigcirc)=1+t \text { tha } 1-t \\
P(\longrightarrow)=1+2 t+t^{2} \text { ans } 1<2 t \quad t^{2}
\end{gathered}
$$

$P\left(\mathbb{C} P^{6}\right)=1+t^{2}+t^{4}+t^{6}$ tha $1 \underbrace{0} \underbrace{t^{2}} t^{4} t^{4} \quad t^{6}$

Wait! How do you see the palindromic property?

The universal coefficient theorem (UCT) for cohomology for all X and PID R :

$$
0 \rightarrow \operatorname{Ext}\left(H_{k-1}(X), R\right) \rightarrow H^{k}(X, R) \rightarrow \operatorname{hom}\left(H_{k}(X), R\right) \rightarrow 0
$$

is a split (non-naturally) short exact sequence

- Thus, in general

$$
H^{k}(X) \cong \operatorname{hom}\left(H_{k}(X), \mathbb{Z}\right) \oplus \operatorname{Ext}\left(H_{k-1}(X), \mathbb{Z}\right)
$$

- Ext vanishes over \mathbb{Q} and hom $\left(H_{k}(X), \mathbb{Q}\right) \cong H_{k}(X, \mathbb{Q})$ if finite, which implies

$$
H_{k}(M, \mathbb{Q}) \cong H^{k}(M, \mathbb{Q})
$$

- Paste this together with Poincaré duality

$$
H_{k}(M, \mathbb{Q}) \cong H^{k}(M, \mathbb{Q}) \cong H_{n-k}(M, \mathbb{Q})
$$

Thank you for your attention!

I hope that was of some help.

