## What is...the Künneth formula?

Or: Multiplication vs. tensor product

The real projective plane again


- $\mathbb{R} P^{2}$ has a cell structure with one cell in dimensions $0,1,2$
- The corresponding cellular chain complex $C_{*}\left(\mathbb{R} P^{2}\right)$ is

$$
C_{2} \cong \mathbb{Z} \xrightarrow{2} C_{1} \cong \mathbb{Z} \xrightarrow{0} C_{0} \cong \mathbb{Z} \text { 剈 } \bullet \xrightarrow{2} \bullet
$$

- The corresponding cellular homology $H_{*}\left(\mathbb{R} P^{2}\right)$ is

$$
\mathbb{Z} \oplus t \mathbb{Z} / 2 \mathbb{Z}
$$

## Multiplication and homology

$-\mathbb{R} P^{2} \times \mathbb{R} P^{2}$ has a cell structure with one cell in dimensions 0,4 , two in dimensions 1,3 and three in dimension 2

- The corresponding cellular chain complex $C_{*}\left(\mathbb{R} P^{2} \times \mathbb{R} P^{2}\right)$ is


Same as $C_{*}\left(\mathbb{R} P^{2}\right) \otimes_{\mathbb{Z}} C_{*}\left(\mathbb{R} P^{2}\right)$

- The corresponding cellular homology $H_{*}\left(\mathbb{R} P^{2} \times \mathbb{R} P^{2}\right)$ is

$$
\mathbb{Z} \oplus t \mathbb{Z} / 2 \mathbb{Z}^{\oplus 2} \oplus t^{2} \mathbb{Z} / 2 \mathbb{Z} \oplus t^{3} \mathbb{Z} / 2 \mathbb{Z}
$$

Not the same as $H_{*}\left(\mathbb{R} P^{2}\right) \otimes_{\mathbb{Z}} H_{*}\left(\mathbb{R} P^{2}\right)$

## Here is the calculation

$$
\begin{aligned}
& C_{2} \cdots \cdots \stackrel{2}{\longrightarrow} \bullet \bullet \cdots \cdots C_{0}
\end{aligned}
$$

$$
\begin{aligned}
& 0 \xrightarrow{0} \mathbb{Z} \xrightarrow{\binom{2}{2}} \mathbb{Z}^{\oplus 2} \xrightarrow{\left(\begin{array}{cc}
0 & 0 \\
2 & -2 \\
0 & 0
\end{array}\right)} \mathbb{Z}^{\oplus 3} \xrightarrow{\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 0 & 2
\end{array}\right)} \mathbb{Z}^{\oplus 2} \xrightarrow{0} \mathbb{Z} \xrightarrow{0} 0 \\
& H_{*}\left(\mathbb{R} P^{2} \times \mathbb{R} P^{2}\right) \cong \mathbb{Z} \oplus t \mathbb{Z} / 2 \mathbb{Z}^{\oplus 2} \oplus t^{2} \mathbb{Z} / 2 \mathbb{Z} \oplus t^{3} \mathbb{Z} / 2 \mathbb{Z} \\
& H_{*}\left(\mathbb{R} P^{2}\right) \otimes H_{*}\left(\mathbb{R} P^{2}\right) \cong \mathbb{Z} \oplus t \mathbb{Z} / 2 \mathbb{Z}^{\oplus 2} \oplus t^{2} \mathbb{Z} / 2 \mathbb{Z}
\end{aligned}
$$

The Künneth measures the difference between $H_{*}(X) \otimes_{\mathbb{Z}} H_{*}(Y)$ and $H_{*}(X \times Y)$

## For completeness: A formal statement

Let $X, Y$ be any topological spaces, and $R$ a PID

- There are short (non-naturally) splitting exact sequences

$$
\begin{aligned}
& \bigoplus_{p+q=n} H_{p}(X, R) \otimes_{R} H_{q}(Y, R) \rightarrow H_{n}(X \times Y, R) \rightarrow \bigoplus_{p+q=n-1} \operatorname{Tor}^{R}\left(H_{p}(X, R), H_{q}(Y, R)\right) \\
& \bigoplus_{p+q=n} H^{p}(X, R) \otimes_{R} H^{q}(Y, R) \rightarrow H^{n}(X \times Y, R) \rightarrow \bigoplus_{p+q=n-1} \operatorname{Tor}^{R}\left(H^{p}(X, R), H^{q}(Y, R)\right)
\end{aligned}
$$

Note the torsion error terms

- There are isomorphism of $\mathbb{Q}$-vector spaces

$$
\begin{aligned}
& H_{*}(X, \mathbb{Q}) \otimes_{\mathbb{Q}} H_{*}(Y, \mathbb{Q}) \cong H_{*}(X \times Y, \mathbb{Q}) \\
& H^{*}(X, \mathbb{Q}) \otimes_{\mathbb{K}} H^{*}(Y, \mathbb{Q}) \cong H^{*}(X \times Y, \mathbb{Q})
\end{aligned}
$$

No error terms

- In particular, $P(X \times Y)=P(X) P(Y)$


## As usual: "Signs! Beware!"

If $X, Y$ are finite cell complexes with projections $p, q: X \times Y \rightarrow X, Y$, then

$$
\begin{gathered}
\times: H^{\bullet}(X, \mathbb{Q}) \otimes_{\mathbb{Q}}^{\prime} H^{\bullet}(Y, \mathbb{Q}) \xrightarrow{\cong} H^{\bullet}(X \times Y, \mathbb{Q}) \text { as graded commutative rings } \\
x(a, b)=p_{*}(a) \smile q_{*}(b)
\end{gathered}
$$



$$
H^{\bullet}\left(T^{d}, \mathbb{Q}\right) \cong \bigwedge \mathbb{Q}^{d} \quad \operatorname{deg} X_{i}=1
$$



$$
H^{\bullet}\left(S^{1}, \mathbb{Q}\right) \cong \mathbb{Q}[X] /\left(X^{2}\right) \quad \operatorname{deg} X=1
$$

Thank you for your attention!

I hope that was of some help.

