What is...the cohomology ring?

Or: Polynomials, of course

Modeled on polynomials

- Polynomial can be multiplied

$$
f(X)=X+1, g(X)=X-1 \Rightarrow(f g)(X)=X^{2}-1
$$

- This immediately generalizes to functions with values in a ring R :

$$
(f g)(r)=f(r) g(r)(\text { product in } R)
$$

- Cochains are functions on chains with values in \mathbb{Z}, so

$$
"(f \smile g)(\sigma)=f(\sigma) g(\sigma) "
$$

This is almost the definition of the cup product \smile

Slogan Cohomology rings "are" polynomial rings

Chain and cochains

- n-chains $n \rightarrow n$-simplices, e.g. $[0,1]$ Basis
- n-cochains Δm-cosimplices, e.g. $[0,1]^{*}$ The dual basis

Multiplying cochains

- Multiply $f \in C^{k}(X) k+1$ inputs and $g \in C^{\prime}(X) I+1$ inputs:

$$
(f \smile g)(\sigma)=f\left(\sigma \mid\left[v_{0} \ldots, v_{k}\right]\right) g\left(\sigma \mid\left[v_{k} \ldots, v_{k+1}\right]\right)
$$

- Note that they "dual-intersect" in $v_{k} \smile$ measures dual-intersections

For completeness: A formal definition

Let X be any topological space

- The cup product on singular chains is

$$
\begin{gathered}
\smile: C^{k}(X) \times C^{\prime}(X) \rightarrow C^{k+1}(X) \\
(f \smile g)(\sigma)=f\left(\sigma \mid\left[v_{0} \ldots, v_{k}\right]\right) g\left(\sigma \mid\left[v_{k} \ldots, v_{k+1}\right]\right)
\end{gathered}
$$

- The cup product descents to cohomology

$$
\smile: H^{k}(X) \times H^{\prime}(X) \rightarrow H^{k+l}(X)
$$

- This defines a graded commutative ring structure $H^{\bullet}(X)=\left(H^{*}(X), \smile\right)$

$$
f \smile g=(-1)^{k l}(g \smile f)
$$

- This structure itself is a homotopy/homeomorphism invariant

Polynomials everywhere, sometimes with signs

$$
H^{\bullet}\left(\mathrm{SO}_{n=2 k+1}(\mathbb{R}), \mathbb{Q}\right) \cong \bigwedge\left\{X_{1}, X_{3}, \ldots, X_{4 k-1}\right\} \quad \operatorname{deg} X_{i}=i
$$

Thank you for your attention!

I hope that was of some help.

