What are...cell complexes?

Or: Constructed from discs

From polygons to donuts

These are constructed from discs/cells : $D^0 = \text{point}$, $D^1 = \text{interval} D^2 = \text{disc}$

Two ways to construct a sphere

Warning. A space can have many cell structures - or none at all!

► Start with a set of points Add 0-cells

► Glue lines to the points along their boundary Add 1-cells

► Continue in this way Add *n*-cells

A cell complex X is constructed inductively via a cell structure :

- (a) Start with a discrete set X^0 of points, the 0-cells
- (b) Form X^n from X^{n-1} by attaching *n*-cells via maps $\phi_{\alpha} \colon S^{n-1} \to X^{n-1}$
- (c) This means X^n is the quotient of $X_{n-1} \coprod_{\alpha} D^n_{\alpha}$ under the identification given by ϕ_{α}
- (d) A subset of X is closed if and only if it meets the closure of each cell in a closed set
 - Having a cell structure gives tools to compute various constructions in algebraic topology Cool!
 - ▶ Such X are also known as CW complexes
 - ▶ The spaces $X^0 \subset X^1 \subset ...$ are the *n*-skeletons
 - There are various finiteness conditions one could impose such as the number of cells is finite
 - ► A topological space might have many cell structures or none at all

A non-example

The Hawaiian earring does not admit a cell structure This makes it hard to compute e.g. the fundamental group Thank you for your attention!

I hope that was of some help.