What is...the Mayer-Vietoris sequence?

Or: More than the sum of its parts!?

The sum of its parts!

If we know $H_{*}(U), H_{*}(V), H_{*}(U \cap V)$, shouldn't we be able to compute $H_{*}(X)$? Cutting into pieces

The sum of its parts?

$U, V \leadsto$ cylinder, $U \cap V \leftrightarrow$ two cylinders

- The Hilbert-Poincaré polynomials are

$$
P(X)=1+2 t+t^{2}, \quad P(U)=P(V)=1+t, \quad P(U \cap V)=2+2 t
$$

- Question Is there any relation between these?

The sum of its parts! Well, almost...

- We get inequations on Hilbert-Poincaré polynomials:

$$
\begin{gathered}
1+2 t+t^{2} \leq(1+t)+(1+t)+t \cdot(2+2 t) \\
P(X) \leq P(U)+P(V)+t \cdot P(U \cap V) \\
(1+t)+(1+t) \leq\left(1+2 t+t^{2}\right)+(2+2 t) \\
P(U)+P(V) \leq P(X)+P(U \cap V) \\
t \cdot(2+2 t) \leq t \cdot((1+t)+(1+t))+\left(1+2 t+t^{2}\right) \\
t \cdot P(U \cap V) \leq t \cdot(P(U)+P(V))+P(X)
\end{gathered}
$$

- The Mayer-Vietoris sequences tells you what to do to get equalities

For completeness: A formal statement

For X any topological space with subspaces U, V whose interior cover X, we have an exact sequence
$\cdots \xrightarrow{\partial_{*}} H_{n}(U \cap V) \xrightarrow{\left(i_{*}, j_{*}\right)} H_{n}(U) \oplus H_{n}(V) \xrightarrow{k_{*}-l_{*}} H_{n}(X) \xrightarrow{\partial_{*}} H_{n-1}(U \cap V) \rightarrow \cdots$ $\cdots \rightarrow H_{1}(X) \xrightarrow{\partial_{*}} H_{0}(U \cap V) \xrightarrow{\left(i_{*}, j_{*}\right)} H_{0}(U) \oplus H_{0}(V) \xrightarrow{k_{*}-l_{*}} H_{0}(X) \rightarrow 0$ This needs a choice of order for U, V

- Here we use the inclusions $i, j: U \cap V \hookrightarrow U, V$ and $k, I: U, V \hookrightarrow X$
- The boundary map ∂_{*} (next slide) lowers the degree
- The three ways to cut out three bits give the inequations, e.g.

$$
\begin{gathered}
H_{*}(U) \oplus H_{*}(V) \rightarrow H_{*}(X) \rightarrow H_{*-1}(U \cap V) \\
P(X) \leq P(U)+P(V)+t \cdot P(U \cap V)
\end{gathered}
$$

- This works mutatis mutandis for cohomology as well

Boundaries $\partial_{n}: H_{n}(X) \rightarrow H_{n-1}(U \cap V)$

$\|\| \mathbf{U} \equiv \mathbf{V} \# \mathbf{U} \cap \mathbf{V}$

- A cycle x in $H_{n}(X)$ is sum of two chains u, v in U, V
- $\partial_{n}(x)=\partial_{n}(u+v)=0 \Rightarrow \partial_{n}(u)=-\partial_{n}(v)$
- Both, $\partial_{n}(u), \partial_{n}(v)$ lie in $H_{n-1}(U \cap V)$
- Define $\partial_{n}(x)=\partial_{n}(u) \in H_{n-1}(U \cap V)$

Thank you for your attention!

I hope that was of some help.

