What is...relative homology?

Or: Calculations modulo subspaces

The homology of a sphere - again

The singular homology of the involved pieces

$$
H_{i}\left(S^{n}\right) \cong\left\{\begin{array} { l l }
{ \mathbb { Z } } & { i = 0 , n } \\
{ 0 } & { \text { else } }
\end{array} \quad H _ { i } (D ^ { n }) \cong \left\{\begin{array} { l l }
{ \mathbb { Z } } & { i = 0 } \\
{ 0 } & { \text { else } }
\end{array} \quad H _ { i } (S ^ { n - 1 }) \cong \left\{\begin{array}{ll}
\mathbb{Z} & i=0, n-1 \\
0 & \text { else }
\end{array}\right.\right.\right.
$$

What is the relation between those three homologies?

From algebra to topology

$$
C_{*}\left(D^{2}\right): \mathbb{Z} \xrightarrow{1} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \quad C_{*}\left(S^{1}\right): 0 \xrightarrow{0} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \quad C_{*}\left(S^{2}\right): \mathbb{Z} \xrightarrow{0} 0 \xrightarrow{0} \mathbb{Z}
$$

- Relative homology $H_{*}(X, A)$ is the homology of $C_{*}(X, A)=C(X) / C(A)$

$$
\begin{gathered}
(0 \xrightarrow{0} \mathbb{Z} \xrightarrow{0} \mathbb{Z}) \hookrightarrow(\mathbb{Z} \xrightarrow{1} \mathbb{Z} \xrightarrow{0} \mathbb{Z}) \rightarrow(\mathbb{Z} \xrightarrow{0} 0 \xrightarrow{0} 0) \\
\text { Algebra } \\
\hline W \hookrightarrow V \rightarrow V / W
\end{gathered} C_{*}(A) \hookrightarrow C_{*}(X) \rightarrow C_{*}(X, A) \text { Topology } .
$$

- $H_{*}(X, A) \neq H_{*}(X) / H_{*}(A)$ in general - and we do want that
- $H_{*}(X / A) \not \approx H_{*}(X, A)$ in general - but almost

From algebra to topology - part 2

$\cdots \xrightarrow{f_{-1}} G_{-1} \xrightarrow{f_{0}} G_{0} \xrightarrow{f_{1}} G_{1} \xrightarrow{f_{2}} \cdots$

This is an exact sequence - kernels=images in any step

Outside zeros are often omitted, e.g.

$$
(0 \rightarrow \mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow 0) \Longleftrightarrow(\mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{Z})
$$

For completeness: A formal definition/statement

Given the following setup for a topological pair (X, A) :
(a) $\iota: A \hookrightarrow X$ the inclusion of A into X
(b) π_{*} be induced by the projection $C_{*}(X) \rightarrow C_{*}(X, A)$
(c) $\partial: H_{*}(X, A) \rightarrow H_{*-1}(A)$ be the map that takes a relative cycle to its boundary
then:

- There exists an exact sequence

$$
\cdots \rightarrow H_{n}(A) \xrightarrow{\iota_{*}} H_{n}(X) \xrightarrow{\pi_{*}} H_{n}(X, A) \xrightarrow{\partial} H_{n-1}(A) \rightarrow \cdots
$$

- $A \neq \emptyset$ closed subspace+deformation retract of some neighborhood in X, then

$$
\tilde{H}_{*}(X / A) \cong H_{*}(X, A)
$$

The tilde means "get rid of the zero homology" (reduced homology)

An example calculation

We have an exact sequence

$$
H_{2}\left(S^{1}\right) \xrightarrow{\iota_{*}} H_{2}\left(D^{2}\right) \xrightarrow{\pi_{*}} H_{2}\left(D^{2}, S^{1}\right) \xrightarrow{\partial} H_{1}\left(S^{1}\right) \xrightarrow{\iota_{*}} H_{1}\left(D^{2}\right)
$$

$$
G H_{1}\left(D^{2}, S^{1}\right) \xrightarrow{\partial} H_{0}\left(S^{1}\right) \xrightarrow{\iota_{*}} H_{0}\left(D^{2}\right) \xrightarrow{\pi_{*}} H_{0}\left(D^{2}, S^{\pi_{*}}\right) \xrightarrow{0} 0
$$

$$
\begin{gathered}
0 \xrightarrow{0} 0 \xrightarrow{0} \mathbb{Z} \xrightarrow{\cong} \mathbb{Z} \xrightarrow{0} 0 \\
\hline 0 \xrightarrow{0} \mathbb{Z} \xrightarrow{\cong} \mathbb{Z} \xrightarrow{0} 0 \xrightarrow{0} 0
\end{gathered}
$$

The reason for the tilde :

$$
\begin{gathered}
H_{i}\left(S^{2} \cong D^{2} / S^{1}\right) \cong H_{i}\left(D^{2}, S^{1}\right) \quad \forall i>0 \\
H_{0}\left(S^{2} \cong D^{2} / S^{1}\right) \not \models H_{0}\left(D^{2}, S^{1}\right)
\end{gathered}
$$

We need to trivialize $H_{0}\left(S^{2}\right)$

Thank you for your attention!

I hope that was of some help.

