What is...homology categorifying?

Or: Modules, polynomials and numbers

Homology and Hilbert-Poincaré and Euler

- H_{*} is a graded \mathbb{Z}-module An honest module

$$
H_{*}(\text { Klein bottle } K)=H_{0}(K) \oplus H_{1}(K) \oplus H_{2}(K) \cong \mathbb{Z} \oplus(\mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}) \oplus 0
$$

- P is a polynomial in $\mathbb{N}[t]$ obtained by taking dimension when working with \mathbb{Q}

$$
P(K)(t)=\operatorname{dim}_{\mathbb{Q}}\left(H_{*}(K) \otimes_{\mathbb{Z}} \mathbb{Q}\right)=1+t
$$

- χ is a number obtained by $t=-1$

$$
\chi(K)=P(K)(-1)=0
$$

Homology vs. Hilbert-Poincaré vs. Euler - part 1

- H_{*} distinguishes spheres

$$
H_{n}\left(S^{d}\right) \cong \begin{cases}\mathbb{Z} & n=0, d \\ 0 & \text { else }\end{cases}
$$

- P distinguishes spheres

$$
P\left(S^{d}\right)=1+t^{d}
$$

- χ does not distinguish spheres:

$$
\chi\left(S^{d}\right)= \begin{cases}2 & d \text { even } \\ 0 & d \text { odd }\end{cases}
$$

Homology vs. Hilbert-Poincaré vs. Euler - part 2

- H_{*} distinguishes S^{1} from K

$$
H_{*}\left(S^{1}\right) \cong \mathbb{Z} \oplus \mathbb{Z}, \quad H_{*}(K) \cong \mathbb{Z} \oplus(\mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z})
$$

- P does not distinguish S^{1} from K

$$
P\left(S^{1}\right)=P(K)=1+t
$$

- χ does not distinguish S^{1} from K

$$
\chi\left(S^{1}\right)=\chi(K)=0
$$

For completeness: A formal definition/statement

- Singular homology $H_{*}(X)$ is a graded \mathbb{Z}-module homotopy invariant

$$
H_{*}(X)=\bigoplus_{i \in \mathbb{N}} H_{i}(X)
$$

- If $\operatorname{dim}_{\mathbb{Q}}\left(H_{i}(X) \otimes_{\mathbb{Z}} \mathbb{Q}\right)$ is finite $\forall i$, then we get a homotopy invariant

$$
P(X)(t)=\sum_{i \in \mathbb{N}} \operatorname{dim}_{\mathbb{Q}}\left(H_{i}(X) \otimes_{\mathbb{Z}} \mathbb{Q}\right) t^{i}
$$

In general this is a formal power series, not a polynomial

- For X with finite $P(X)(t)$ we get a homotopy invariant

$$
\chi(X)=P(X)(-1)
$$

For X being a finite cell complex this agrees with the "alternating-sum-of-cells" definition of χ

Homology vs. Hilbert-Poincaré vs. Euler - part 3

- H_{*} is a functor It knows maps as well
- From this one gets the Lefschetz numbers $\Lambda(f)$ for $f: X \rightarrow X$
- For a reasonable space $X: \Lambda(f)=0$ if and only if f has a fixed point
- There is nothing comparable for P or χ

Using this one can give a short proof of the Brouwer fixed point theorem since

$$
\Lambda\left(f: D^{n} \rightarrow D^{n}\right) \neq 0
$$

Thank you for your attention!

I hope that was of some help.

