Or: Winding around



The cell complex — Step 1

f

» Given a cell structure we count:
co = Ftvertices = 2 ¢; = #edges =4 ¢, = F#faces = 2

» Set C; = QF, with basis being vertices, edges and faces



Walking in circles — Step 2
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» We construct ' attaching matrices (after fixing ordered bases):

60 Q2 = Q46 = , 51:(@4—)@2,(51:(1 0 -1 O)
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» We have vector spaces C; = Q% and matrices 9;



How to count holes? — Step 3
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We get a chain complex:
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Take its homology “kernel minus rank”



For completeness: A formal definition
Let X be a cell complex
» The nth cellular chain group is
Co = Co(X) = Z{n-cells} = Z{e] | i runs over all n-cells}
» The nth cellular chain map is
dn: Cp — Ch_1, On(0) is given by the attaching map
» The ith cellular homology is

H, = Hp(X) = ker(0,)/im(dp41)

» Cellular homology is a homotopy/homeomorphism invariant

Simplicial /singular homology also exist

Singular homology=simplicial homology=cellular homology for any reasonable X

Singular homology is general, simplicial homology is computable for machines,
cellular is computable for humans



Mind the winding maps
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» The homology over Q in this case is Hy = Q, H; =20, H, =0
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» The homology over Z in this case is Hy &2 Z, Hy 2 7Z/3Z, H, =0
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| hope that was of some help.



