What is...cellular homology?

Or: Winding around

The cell complex - Step 1

- Given a cell structure we count:

$$
c_{0}=\# \text { vertices }=2 \quad c_{1}=\# \text { edges }=4 \quad c_{2}=\# \text { faces }=2
$$

- Set $C_{i}=\mathbb{Q}^{c_{i}}$, with basis being vertices, edges and faces

Walking in circles - Step 2

- We construct attaching matrices (after fixing ordered bases):

$$
\delta_{2}: \mathbb{Q}^{2} \rightarrow \mathbb{Q}^{4}, \delta_{2}=\left(\begin{array}{ll}
0 & 0 \\
1 & 1 \\
0 & 0 \\
1 & 1
\end{array}\right), \quad \delta_{1}: \mathbb{Q}^{4} \rightarrow \mathbb{Q}^{2}, \delta_{1}=\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
-1 & 0 & 1 & 0
\end{array}\right)
$$

- We have vector spaces $C_{i}=\mathbb{Q}^{c_{i}}$ and matrices δ_{i}

How to count holes? - Step 3

We get a chain complex:

Take its homology

For completeness: A formal definition

Let X be a cell complex

- The nth cellular chain group is

$$
C_{n}=C_{n}(X)=\mathbb{Z}\{n \text {-cells }\}=\mathbb{Z}\left\{e_{n}^{i} \mid i \text { runs over all } n \text {-cells }\right\}
$$

- The nth cellular chain map is

$$
\delta_{n}: C_{n} \rightarrow C_{n-1}, \quad \delta_{n}(\sigma) \text { is given by the attaching map }
$$

- The i th cellular homology is

$$
H_{n}=H_{n}(X)=\operatorname{ker}\left(\delta_{n}\right) / \operatorname{im}\left(\delta_{n+1}\right)
$$

Cellular homology is a homotopy/homeomorphism invariant

Simplicial/singular homology also exist
Singular homology=simplicial homology=cellular homology for any reasonable X
Singular homology is general, simplicial homology is computable for machines, cellular is computable for humans

Mind the winding maps

- The homology over \mathbb{Q} in this case is $H_{0} \cong \mathbb{Q}, H_{1} \cong 0, H_{2} \cong 0$

- The homology over \mathbb{Z} in this case is $H_{0} \cong \mathbb{Z}, H_{1} \cong \mathbb{Z} / 3 \mathbb{Z}, H_{2} \cong 0$

$$
0 \xrightarrow{0} \mathbb{Z} \xrightarrow{\left(\begin{array}{lll}
3 & 3
\end{array}\right)} \mathbb{Z}^{3} \xrightarrow{\left(\begin{array}{ccc}
1 & 0 & -1 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right)} \mathbb{Z}^{3} \xrightarrow{0} 0
$$

Thank you for your attention!

I hope that was of some help.

