What are...simplicial and singular homology?

Or: Cycles modulo boundaries

- We start by counting:

$$
c_{0}=\# \text { vertices }=4 \quad c_{1}=\# \text { edges }=5 \quad c_{2}=\# \text { faces }=1
$$

- Set $C_{i}=\mathbb{Q}^{c_{i}}$, with basis being vertices, edges and faces

How to count holes? - Step 2

$$
\begin{gathered}
C_{0}=\mathbb{Q}\{[0],[1],[2],[3]\} \\
C_{1}=\mathbb{Q}\{[0,1],[0,2],[0,3],[1,2],[2,3]\} \\
C_{2}=\mathbb{Q}\{[0,1,2]\}
\end{gathered}
$$

- We construct simplices-to-faces matrices (after fixing ordered bases):

$$
\delta_{1}: \mathbb{Q}^{5} \rightarrow \mathbb{Q}^{4}, \delta_{1}=\left(\begin{array}{ccccc}
1 & 1 & 1 & 0 & 0 \\
-1 & 0 & 0 & 1 & 0 \\
0 & -1 & 0 & -1 & 1 \\
0 & 0 & -1 & 0 & -1
\end{array}\right), \quad \delta_{2}: \mathbb{Q} \rightarrow \mathbb{Q}^{5}, \delta_{2}=\left(\begin{array}{c}
1 \\
-1 \\
0 \\
1 \\
0
\end{array}\right)
$$

- We have vector spaces $C_{i}=\mathbb{Q}^{c_{i}}$ and matrices δ_{i}

How to count holes? - Step 3

We get a chain complex, the simplicial complex:

Take its homology "cycles modulo boundaries"

For completeness: A formal definition

Let X be any topological space

- The nth singular chain group is

$$
C_{n}=C_{n}(X)=\mathbb{Z}\{\text { singular n-simplices }\}=\mathbb{Z}\left\{\sigma_{n}: \Delta^{n} \rightarrow X\right\}
$$

- The nth singular chain map is

$$
\delta_{n}: C_{n} \rightarrow C_{n-1}, \quad \delta_{n}(\sigma)=\left.\sum_{i}(-1)^{i} \sigma\right|_{\left[v_{0}, \ldots,\right.} \underbrace{v_{i}}_{\text {delete }}, \ldots, v_{n}]
$$

- The i th singular homology is

$$
H_{n}=H_{n}(X)=\operatorname{ker}\left(\delta_{n}\right) / \operatorname{im}\left(\delta_{n+1}\right)
$$

- Singular homology is a homotopy/homeomorphism invariant

Simplicial homology is what was calculated on the previous slides and
Singular homology=simplicial homology for any reasonable X
Singular homology is general, simplicial homology computable

Why the integers?

$$
\begin{aligned}
& 0 \stackrel{0}{\leftarrow} \underline{\mathbb{Z}} \stackrel{0}{\leftarrow} \mathbb{Z} \stackrel{2}{\leftarrow}_{\leftarrow}^{\mathbb{Z}} \stackrel{0}{\leftarrow} \mathbb{Z} \stackrel{\cdot 2}{\leftarrow} \mathbb{Z} \stackrel{0}{\leftarrow} \ldots \Rightarrow H_{n} \cong\left\{\begin{array}{c}
\mathbb{Z} \text { if } n \text { is even } \\
\mathbb{Z} / 2 \mathbb{Z} \text { if } n \text { is odd }
\end{array}\right. \\
& 0 \leftarrow \mathbb{Q} \stackrel{0}{\leftarrow} \mathbb{Q} \stackrel{\cdot 2}{\leftarrow} \mathbb{Q} \stackrel{0}{\leftarrow} \mathbb{Q} \stackrel{\cdot 2}{\leftarrow} \mathbb{Q} \stackrel{0}{\leftarrow} \ldots \Rightarrow H_{n} \cong\left\{\begin{array}{l}
\mathbb{Q} \text { if } n \text { is even } \\
0 \text { if } n \text { is odd }
\end{array}\right.
\end{aligned}
$$

$0 \stackrel{0}{\leftarrow} \underline{\mathbb{Z} / 2 \mathbb{Z}} \leftarrow \mathbb{Q} / 2 \mathbb{Z} \stackrel{\cdot 2}{\leftarrow} \mathbb{Z} / 2 \mathbb{Z} \stackrel{0}{\leftarrow} \mathbb{Z} / 2 \mathbb{Z} \stackrel{\cdot 2}{\leftarrow} \mathbb{Z} / 2 \mathbb{Z} \stackrel{0}{\leftarrow} \ldots \Rightarrow H_{n} \cong\left\{\begin{array}{l}\mathbb{Z} / 2 \mathbb{Z} \text { if } n \text { is even } \\ \mathbb{Z} / 2 \mathbb{Z} \text { if } n \text { is odd }\end{array}\right.$

$$
\text { Underline }=C_{0}
$$

- Working over the integers one can specialize to any field More general
- Note that "homology=kernel-rank" does not work integrally Careful

Thank you for your attention!

I hope that was of some help.

