What are...simplicial complexes?

Or: Triangles everywhere

Lots of triangles

- A 0 dimensional triangle is a point
- A 1 dimensional triangle is a line
- A 2 dimensional triangle is a solid triangle
- A 3 dimensional triangle is a solid tetrahedron
- An n dimensional triangle is called an n simplex

Lots of triangles glued together

- The boundary of an n simplex is made of $n-1$ simplex
- Gluing simplices along their boundary gives simplicial complexes

(a) A simplicial complex

(b) Missing edge

(c) Shared partial edge
(d) Nonface intersection
(a) is ok but (b), (c) and (d) are not allowed

An n simplex for v_{0}, \ldots, v_{n} is smallest convex set in \mathbb{R}^{n+1} containing v_{0}, \ldots, v_{n} that do not lie in a hyperplane of dimension less than n

If we delete one of the $n+1$ vertices of an n simplex, then the remaining n vertices span an ($n-1$) simplex, called a face 3d terminology

Sometimes one needs an orientation, but this is ignored in this video

A simplicial complex Δ is a set of simplices satisfying

- Every face of a simplex from Δ is also in Δ (b) from before
- A $\neq \emptyset$ intersection of 2 simplices in Δ is a face of both (c),(d) from before

Abstract simplicial complexes

- Abstract simplicial complexes $\Delta_{a b}$ are collections of non-empty sets satisfying

$$
\left(X \in \Delta_{a b} \text { and } Y \subset X\right) \Rightarrow\left(Y \in \Delta_{a b}\right)
$$

These can be geometrically realized into simplicial complexes

- Example The abstract standard 2-simplex and its geometric realization:

$$
\Delta_{a b}^{2}=\left\{\begin{array}{c}
{\left[v_{0}\right],\left[v_{1}\right],\left[v_{2}\right],\left[v_{0}, v_{1}\right],} \\
{\left[v_{0}, v_{2}\right],\left[v_{1}, v_{2}\right],\left[v_{0}, v_{1}, v_{2}\right]}
\end{array}\right\}
$$

Thank you for your attention!

I hope that was of some help.

