What is...homology intuitively?

Or: What is a hole?

The torus T and the solid torus T^{s}

- A zero dimensional hole $\operatorname{dim} H_{0}$ is a connected component
- A one dimensional hole $\operatorname{dim} H_{1}$ is the number of necklaces you can put it on
- A two dimensional hole $\operatorname{dim} \mathrm{H}_{2}$ is the number of plugs needed to inflate it

Eric Weisstein "A hole in a mathematical object is a topological structure which prevents the object from being continuously shrunk to a point."

Chains, cycles and boundaries of triangles

$a+b+c$ cycle + ↔
cycle+ boundary

$$
a-b+c
$$

boundary

- Chains $=$ linear combination of edges The cells tell us what to do
- Cycles = linear combination of edges in a triangulation going around a circle Holes \Rightarrow make them potentially interesting
- Boundary $=$ linear combination of edges in a triangulation around a filled triangle No holes \Rightarrow make them trivial

Chains, cycles and boundaries of holed triangles

mod boundary

These are equal by successively replacing and redirecting edges in triangles :

For completeness: A naive but good definition

Let X be a reasonable space

- Let $C_{i}(X)$ be the vector space \mathbb{K}^{n} where $n=$ number of i-cells Chains
- $\delta_{i}: C_{i}(X) \rightarrow C_{i-1}(X)$ sending an i-cell to its boundary
- Take $\operatorname{ker}\left(\delta_{i}\right)$ Cycles
- Take im $\left(\delta_{i+1}\right)$ Boundaries
- One checks that $\operatorname{im}\left(\delta_{i+1}\right) \subset \operatorname{ker}\left(\delta_{i}\right)$

The the i th homology $H_{i}(X)$ of X is the abelian group

$$
H_{i}(X)=\operatorname{ker}\left(\delta_{i}\right) / \operatorname{im}\left(\delta_{i+1}\right)
$$

You can actually formulate everything using abelian groups and not vector spaces

The triangle exemplified

- $C_{0}=\mathbb{Q}\{x, y, z\}, C_{1}=\mathbb{Q}\{a, b, c\}, C_{2}=\mathbb{Q}\{t\}$
- The maps are

$$
\begin{aligned}
& \delta_{3}: 0 \rightarrow C_{2}, 0 \mapsto 0, \quad \delta_{2}: C_{2} \rightarrow C_{1}, t \mapsto a+b+c \text { an }\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \\
& \delta_{1}: C_{1} \rightarrow C_{0},\left\{\begin{array}{l}
a \mapsto x-y \\
b \mapsto y-z \text { an } \\
c \mapsto z-x
\end{array}\right.
\end{aligned}
$$

- So we get $H_{0}($ triangle $) \cong \mathbb{Q}, H_{1}($ triangle $) \cong 0, H_{2}($ triangle $) \cong 0$

Thank you for your attention!

I hope that was of some help.

