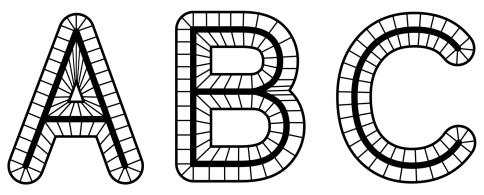
What is...homotopy?

Or: The same shape!?

The homotopy types of the Latin alphabet

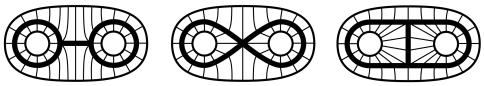


Homotopy types of the graphs underlying the alphabet:

Genus 0	Genus 1	Genus 2
CEFGHIJKLMNSTUVWXYZ	ADOPQR	В

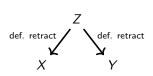
Question. How to make this precise?

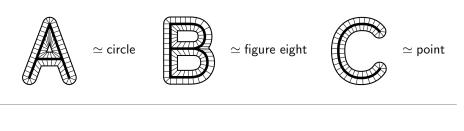
- Retraction $r: X \to X$ with $r^2 = r$ Idempotent
- ▶ *r* is a projection onto its image $A \subset X$: r(X) = A and $r|_A = A$ Projection
- ▶ Deformation retraction $h_t: X \to X$ with $h_0 = \text{id}$ and $h_1 = r$ a retraction; the family h_t is continuous, *i.e.* $X \times [0, 1] \to X, (x, t) \mapsto h_t(x)$ is continuous In topology everything should be continuous

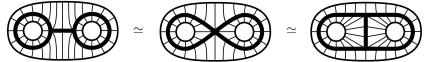


Three deformation retracts of the same space

Equivalent shapes





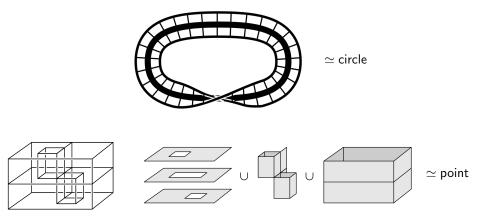


Two continues maps $f, f' \colon X \to Y$ are homotopic $f \simeq f'$ if: (a) There exists a continuous $h_t \colon X \to Y$ with $h_0 = f$ and $h_1 = f'$ (b) $X \times [0,1] \to X, (x,t) \mapsto h_t(x)$ is continuous Two topological spaces X, Y are homotopy equivalent $X \simeq Y$ if: (a) There exists continuous $f \colon X \to Y$ and $g \colon Y \to X$ (b) $gf \simeq \operatorname{id}_X$ and $fg \simeq \operatorname{id}_Y$

 $X \simeq Y$ if and only if both are homeomorphic to deformation retracts of a space Z

The correct notion for algebraic topology:

- ► Homology and cohomology (singular) are invariant under homotopy
- The fundamental group and homotopy groups are invariant under homotopy (for reasonable spaces)



In topology there is no "obviously correct" version of equal Homeomorphic \Rightarrow homotopic, but not *vice versa* in general

Thank you for your attention!

I hope that was of some help.