What are...applications of the spectrum?

Or: The spectrum knows a lot!

Characterizing graphs

▶ The spectrum $S = \{\lambda_1 \ge ... \ge \lambda_n\}$ can characterize graphs

• Example *G* is *k* regular
$$\Leftrightarrow \lambda_1^2 + ... + \lambda_n^2 = kn$$

• Example G is bipartite $\Leftrightarrow (\lambda_i \in S \Rightarrow -\lambda_i \in S \text{ with same multiplicity})$

Detecting clusters

Coclique = a set of pairwise nonadjacent vertices

• Independence number $\alpha(G) =$ size of the largest coclique

• Example We have $\alpha(G) \leq -n\lambda_1\lambda_n/(\delta^2 - \lambda_1\lambda_n)$; δ = minimum vertex degree

Knowing colorings

- ▶ The spectrum knows colorings , e.g. the chromatic number $\chi(G)$
 - Example If G is connected, then $\chi(G) \le 1 + \lambda_1$

• Example If G is not edgeless, then $\chi(G) \ge 1 - \lambda_1/\lambda_n$

The graph spectrum has many applications, e.g.:

- ▷ For characterizing graphs My first example
- ▷ For (co)cliques My second example
- ▷ For colorings My third example
- \triangleright For variations, e.g. $\chi(G) \geq \min(1 + \textit{mult}(\lambda_n), 1 \lambda_n/\lambda_2)$ for $\lambda_2 > 0$
- ▷ For many more, e.g. Shannon capacity (we will see this maybe later)

PageRank

Suppose pages $x_1, ..., x_m$ are the pages that link to a page y. Let page x_i have d_i outgoing links. Then the PageRank of y is given by

$$PR(y) = 1 - \alpha + \alpha \sum_{i} \frac{PR(x_i)}{d_i}.$$

The PageRanks form a probability distribution: $\sum_{x} PR(x) = 1$. The vector of PageRanks can be calculated using a simple iterative algorithm, and corresponds to the principal eigenvector of the normalized link matrix of the web. A PageRank for 26 million web pages can be computed in a few hours on a medium size workstation. A suitable value for α is $\alpha = 0.85$.

► Google's PageRank is one of the most crucial applications of the spectrum

▶ There will be a whole video explaining it

Thank you for your attention!

I hope that was of some help.