What is...a greedy algorithm 2?

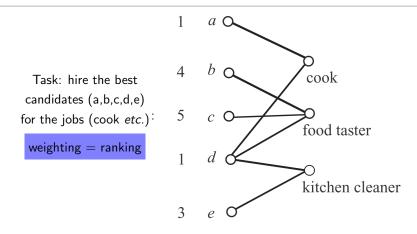
Or: Greedy for matroids

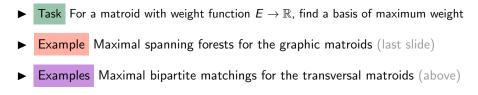
Greedy strategy for spanning forests



- ► Maximal spanning forests can be found using a greedy strategy
- ► Maximal spanning forests are the (weighted) bases of a matroid
- Crucial observation This is not a coincidence

Matroid optimization problem





Greedy algorithm

Input: A finite set E, a weight function $w : E \to \mathbb{R}$ and a family \mathcal{I} of subsets of E.

Order the elements of $E: e_1, e_2, \ldots, e_n$ so that $w(e_i) \ge w(e_j)$ for $i \le j$. Set $B := \emptyset$. For i = 1 to n, if $B \cup e_i \in \mathcal{I}$, then set $B := B \cup e_i$. Output: B, a maximal member of \mathcal{I} of maximum weight.

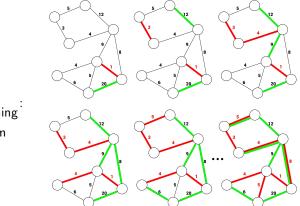
Matroid
$$(E, \Im = \mathcal{I})$$
 via linear independent sets

Weighting = ranking

Example On the previous page we get $\{c, e, a\}$ (or $\{c, e, d\}$)

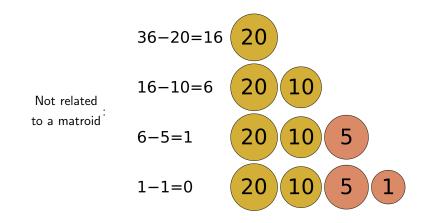
The greedy algorithm works for all matroids and all weightings

- ▶ One can characterize when a greedy strategy applies (more on the next slide)
- ▶ Both, maximal or minimal, can be done similarly



This is often stated as a minimal spanning forests problem

Matroid embeddings



- ► Very often greedy situations come from a matroid but not all
- ► There is a generalization of a matroid called matroid embedding such that all greedy situations come from these matroid embeddings

Thank you for your attention!

I hope that was of some help.