What is...the diameter of random graphs?

Or: The same diameter!?

Diameter $d(G)$ of a graph G

\mathbf{v}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{1}$	0	1	1	2	2	1	3
$\mathbf{2}$	1	0	2	1	3	2	4
$\mathbf{3}$	1	2	0	3	1	2	2
$\mathbf{4}$	2	1	3	0	2	1	3
$\mathbf{5}$	2	3	1	2	0	1	1
$\mathbf{6}$	1	2	2	1	1	0	2
$\mathbf{7}$	3	4	2	3	1	2	0

- $d(G)=$ length of the shortest path between the most distanced vertices
- $d(G)=$ how far we must travel from one end of G to the other
- $d(G)=\infty$ for non-connected graphs but we ignore that case

Many edges

- Recall that random graphs have many edges
- Expectation The diameter of almost all graphs is tiny
- Question How tiny? Certainly >1 (only K_{n} has $d(G)=1$). 2? 3? Bounded?

Testing diameters of random graphs

Top The diameters of 10000 random coin flip graphs with 10 vertices

- Bottom The diameters of 10000 random coin flip graphs with 50 vertices

For completeness: A formal statement

Suppose $0<p \leq 1$ and M are constant, then:

- Almost all $G_{n, p}$ have $d\left(G_{n, p}\right)=2$
- Almost all $G(n, M)$ have $d(G(n, M))=2$

Hence, almost all graphs are tiny

- Even better, almost all graphs are equally tiny but not small world (up next)

- There is also a statement for varying p and M

Small world is not quite random

- Small world \approx networks like social media have small diameter
- It was quickly realized that small world needs different random graph models
- Problem The random graph models we have seen have no clusters

Thank you for your attention!

I hope that was of some help.

