What are...symmetries of random graphs?

Or: There are no symmetries!

Symmetries are everywhere

- Symmetry is a fundamental concept of nature
- In mathematics symmetry is often measured by symmetry groups
- Goal Let us explore symmetries of graphs

Symmetries are everywhere!

$$
\operatorname{Aut}(G)=S_{5}:
$$

- $\operatorname{Aut}(G)=$ set of vertex bijections $G \rightarrow G$ that preserve connectivity
- Large Aut (G) $\xrightarrow{n} \rightarrow$ very symmetric graph
- Question How symmetric are most graphs?

Symmetries are everywhere?

26-Paulus graph 6
($n=26,|A u t|=3$)

Cremona-Richmond configuration graph ($n=15,|A u t|=5$)

42-cubic graph 2 ($n=42, \mid$ Aut $\mid=7$)
(9,3)-configuration
graph 1

40-fullerene graph 12 ($n=40,|A u t|=3$)

22-quintic graph 1 ($n=22,|A u t|=5$)

$$
\text { 25-Paulus graph } 3
$$

$$
(n=25,|A u t|=
$$

Tutte's graph ($n=46,|A u t|=3$)

Johnson solid skeleton

$$
47
$$

$$
(n=35,|A u t|=5)
$$

25-Paulus graph 9 ($n=25, \mid$ Aut $\mid=3$)

Watkins's snark ($n=50,|A u t|=5$)

- Naive approach: list all graphs with $\leq n$ vertices and their $\operatorname{Aut}(G)$
- Observation 1 Most graphs have no symmetries $\operatorname{Aut}(G) \cong 1$
- Observation 2 Some groups appear way more often than other as $\operatorname{Aut}(G)$

For completeness: A formal statement

Suppose $0<p \leq 1$ and M are constant, then:

- Almost all $G_{n, p}$ have $\operatorname{Aut}(G) \cong 1$
- Almost all $G(n, M)$ have $\operatorname{Aut}(G) \cong 1$

Hence, almost no graph is symmetric

- Being asymmetric is the essence of random, so this is actually more way more general (but we can formally prove it for graphs)
- In contrast, asymmetry in nature is rare and "weird":

Some symmetries are super rare

- Above Mathematica created 10000 random graphs and computed \mid Aut $(G) \mid$
- Result $1 \rightarrow 8237,2 \rightarrow 1550,4 \rightarrow 184,6 \rightarrow 10,8 \rightarrow 12,12 \rightarrow 3,16 \rightarrow 2,24 \rightarrow 1,32 \rightarrow 1$
- Some graphs appear much more often than other (can be proven formally)

Thank you for your attention!

I hope that was of some help.

