Or: There are no symmetries!



Symmetries are everywhere
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» Symmetry is a fundamental concept of nature
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» In mathematics symmetry is often measured by symmetry groups

» Goal Let us explore symmetries of graphs



Symmetries are everywhere!

> Aut(G) = set of vertex bijections G — G that preserve connectivity
» Large Aut(G) «~ very symmetric graph

» Question| How symmetric are most graphs?



Symmetries are everywhere?
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» Naive approach: [list all graphs with < n vertices and their Aut(G)

» Observation 1 Most graphs have no symmetries Aut(G)

» Observation 2| Some groups appear way more often than

other as Aut(G)



For completeness: A formal statement

Suppose 0 < p < 1 and M are constant, then:

» Almost all G, have -

» Almost all G(n, M) have Aut(G) =1

» Being asymmetric is the essence of random, so this is actually more way more
general (but we can formally prove it for graphs)

» In contrast, asymmetry in nature is rare and “weird":




Some symmetries are super rare
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» Above Mathematica created 10000 random graphs and computed |Aut(G)|
» Result 182372 — 1550,4 — 184,6 — 10,8 — 12,12 3,16 — 2,24 — 1,32 — 1

» Some graphs appear ‘'much more often than other (can be proven formally)



| hope that was of some help.



