## What is...true for almost all graphs?

Or: Many, many edges...

Many edges - part 1


- Recall Most graphs have many edges
- Almost all graphs should be connected
- Above \# connected graphs / \# all graphs

- Recall Most graphs have many edges
- Almost no graph should be planar
- Above \# planar graphs / \# all graphs


## Many edges - part 3



- Recall Most graphs have many edges
- Almost all graphs should be Hamiltonian and almost no graph should be Eulerian
- Above \# connected Hamil resp. Euler / \# all graphs


## For completeness: A formal statement

For constant $0<p \leq 1$ we have:

- Almost all $G_{n, p}$ are connected
- Almost all $G_{n, p}$ are not planar
- Almost all $G_{n, p}$ are Hamiltonian ; almost no $G_{n, p}$ is Eulerian
- There are also statements for varying $p$
- Similarly for essentially all properties that depend on the number of edges



## Almost no symmetries

## smallest cyclic group

## graph

| $\mid$ Aut $(G) \mid$ | OEIS | counts of graphs with $1,2, \ldots$ nodes |
| ---: | :--- | :--- |
| 1 | A003400 | $0,0,0,0,0,8,152,3696,135004, \ldots$ |
| 2 | A075095 | $0,2,2,3,11,46,354,4431,89004, \ldots$ |
| 3 |  | $0,0,0,0,0,0,0,0,4, \ldots$ |
| 4 | A075096 | $0,0,0,2,6,36,248,2264,31754, \ldots$ |
| 6 | A075097 | $0,0,2,2,2,8,38,252,3262, \ldots$ |
| 8 | A075098 | $0,0,0,2,4,14,74,623,7003, \ldots$ |



- $\operatorname{Aut}(G)=$ group of automorphisms of a graph
- Graph automorphisms keep adjacency so random appearing edges are tricky
- Theorem Almost all graphs have trivial automorphism group

Thank you for your attention!

I hope that was of some help.

