What are...random graphs?

Or: Random is maybe not so random...

A random example

- Prime numbers appear essentially randomly
- Zooming out, they mostly look like noise
- However, also many patterns one can be observe

Random graphs

- Random graphs = choose edges randomly
- Zooming out, they mostly look like noise
- However, also many patterns one can be observe

Example: connectivity

random graph with 20 nodes, 10% edge probability

- We study random graphs for $n=|V| \gg 0$
- Asymptotically many patterns arise
- Example Almost all random graphs are connected

For completeness: A formal statement

Almost all (random) graphs are Hamiltonian; almost no (random) graph is Eulerian

- Hamiltonian = has a cycles that visits all vertices; Eulerian = has a cycles that visits all edges; looks similar, but is different:

- Crucial (Almost all \neq all $)$ and (almost no \neq no) !

Most properties are "almost" properties

- Above: The ratio Hamil/all and Euler/all
- Goal of the upcoming series Explain what random graphs are and give examples of "almost" properties

Thank you for your attention!

I hope that was of some help.

