What are...adjacency matrices?

Or: Graphs " $=$ " matrices

Simple graphs and multigraphs

- Simple graphs " $=$ " vertices+edges with no loops or multiple edges
- Multi graphs " $=$ " vertices+edges with no restriction
- In this series graph $=$ finite simple graph + multigraph $=$ finite multigraph

From a graph to a 0,1 (sym. square diagonal zero) matrix

- Underrated fact Graphs " $=$ " 0,1 matrices $=$ adjacency matrix $A(G)$
- Essentially every vertex corresponds to a column/row, and edges are entries
- Theorem We can go go back-and-forth, i.e. there is a bijection $A\left({ }^{(}\right)$

From a multigraph to a (sym. square) \mathbb{N} matrix

(ms $\left(\begin{array}{llllll}0 & 1 & 1 & 1 & 0 & 2 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 2 & 0 \\ 1 & 0 & 1 & 0 & 2 & 1 \\ 0 & 0 & 2 & 2 & 0 & 0 \\ 2 & 0 & 0 & 1 & 0 & 1\end{array}\right)$

- Underrated fact Multigraphs " $=$ " \mathbb{N} matrices = adjacency matrix $A(G)$
- Essentially every vertex corresponds to a column/row, and edges are entries
- Theorem We can go go back-and-forth, i.e. there is a bijection $A\left({ }_{(}\right)$

For completeness: A formal statement

The adjacency matrix gives a bijection

$A\left(_\right):\{$Multigraphs $\} \rightarrow\{$ symmetric square \mathbb{N} matrices $\}$

The inverse is the graph obtained by reading the adjacency matrix

- Isomorphism of multigraphs ans conjugation via permutation matrices

$$
P_{\pi}=\left[\begin{array}{l}
\mathbf{e}_{\pi(1)} \\
\mathbf{e}_{\pi(2)} \\
\mathbf{e}_{\pi(3)} \\
\mathbf{e}_{\pi(4)} \\
\mathbf{e}_{\pi(5)}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{e}_{1} \\
\mathbf{e}_{4} \\
\mathbf{e}_{2} \\
\mathbf{e}_{5} \\
\mathbf{e}_{3}
\end{array}\right]=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

- Thus, multigraphs " $=$ " \mathbb{N} matrices
- There are similar statements for graphs

From a directed multigraph to a (square) \mathbb{N} matrix

- Underrated fact Directed multigraphs " $=$ " \mathbb{N} matrices $=$ adjacency matrix $A(G)$
- Essentially every vertex corresponds to a column/row, and edges are entries
- Theorem We can go go back-and-forth, i.e. there is a bijection $A\left({ }_{(}\right)$

Thank you for your attention!

I hope that was of some help.

