What is...the complexity of the Tutte polynomial?

Or: Easy or difficult?

Computing the Tutte polynomial $T_G(x, y)$

▶ $T_G(x, y)$ counts many things, so it would be good to compute it efficiently

• Question How difficult is it to compute $T_G(x, y)$?

• Question How difficult is it to compute $T_G(a, b)$ for $(a, b) \in \mathbb{C}^2$?

Landau–Bachmann notation

- ▶ We say $f \in O(g)$ if $f(n) \le cg(n)$, c=constant, from some point onward
- ▶ Example $10000n \in O(n^2)$
- ▶ We use this to analyze worst-case runtime for algorithms

The computation via recursion

▶ Recall the deletion-contraction way to compute $T_G(x, y)$

► This looks like exponential growth

Guess Computing $T_G(x, y)$ is in probably difficult *e.g.* Tutte $\in O(2^{\#edges})$

The computation of $T_G(a, b)$ is... • ...in O(polynomial) for (a - 1)(b - 1) = 1 Easy

- ...in O(polynomial) for $(j = \exp(2\pi i/3))$ $(a, b) \in \{(1, 1), (-1, -1), (0, -1), (-1, 0), (i, -i), (-i, i), (j, j^2), (j^2, j)\}$ Easy
- ► ...#P hard otherwise Hard
- ▶ #P hard \approx *Tutte* \in $O(2^{\#edges})$ but the precise runtime is unknown
- ► Note the huge difference between general and specific points

Difficult in general, but...

Graph class	♯P -hard	subexponential	FPT	Р
All graphs	$\mathbb{C}^2 - H$	Н	Н	Н
planar	$\mathbb{C}^2 - H_2$	H_2	H_2	H_2
bipartite planar	$\mathbb{C}^2 - H_{b-p}$	H_{b-p}	H_{b-p}	H_{b-p}
TW(k)	Ø	\mathbb{C}^2	\mathbb{C}^2	Н
CW(k)	Ø	\mathbb{C}^2	H	H
H = hyperbola from the previous slide				
TW(k) = tree width at most k				
CW(k) = clique width at most k				

• Computing $T_G(x, y)$ in general is difficult

• Computing $T_G(x, y)$ in special cases is not so bad

Thank you for your attention!

I hope that was of some help.