What is...the complexity of the Tutte polynomial?

Or: Easy or difficult?

Computing the Tutte polynomial $T_{G}(x, y)$

For completeness: A formal statement
There exists a polynomial $T_{G}(x, y)$ associated to a graph such that:

- $T_{G}(2,1)=\#$ forests
- $T_{G}(1,1)=\#$ spanning forests
- $T_{G}(1,2)=\#$ spanning subgraphs
- More.
- The polynomial is called Tutte polynomial
- Also we have the specialization "chromatic $(x)=\operatorname{Tutte}(\mathrm{x}, 0)$ ", and more

- $T_{G}(x, y)$ counts many things, so it would be good to compute it efficiently

Question How difficult is it to compute $T_{G}(x, y)$?
Question
How difficult is it to compute $T_{G}(a, b)$ for $(a, b) \in \mathbb{C}^{2}$?

- We say $f \in O(g)$ if $f(n) \leq c g(n), c=$ constant, from some point onward
- Example $10000 n \in O\left(n^{2}\right)$
- We use this to analyze worst-case runtime for algorithms

The computation via recursion

- Recall the deletion-contraction way to compute $T_{G}(x, y)$
- This looks like exponential growth
- Guess Computing $T_{G}(x, y)$ is in probably difficult e.g. Tutte $\in O\left(2^{\# e d g e s}\right)$

For completeness: A formal statement

The computation of $T_{G}(a, b)$ is...

- ...in $O($ polynomial $)$ for $(a-1)(b-1)=1$ Easy

- ...in O (polynomial) for $(j=\exp (2 \pi i / 3))$
$(a, b) \in\left\{(1,1),(-1,-1),(0,-1),(-1,0),(i,-i),(-i, i),\left(j, j^{2}\right),\left(j^{2}, j\right)\right\}$
- ...\#P hard otherwise Hard
- \#P hard \approx Tutte $\in O\left(2^{\# e d g e s}\right)$ but the precise runtime is unknown
- Note the huge difference between general and specific points

Difficult in general, but...

- Computing $T_{G}(x, y)$ in general is difficult
- Computing $T_{G}(x, y)$ in special cases is not so bad

Thank you for your attention!

I hope that was of some help.

