What is...the Tutte polynomial?

Or: More counting!

The chromatic polynomial

- ▶ Recall that a way to define the chromatic polynomial was deletion-contraction
- ► Here we kill loops since loops rule out colorings
- ▶ Idea Keep the loops, give them the variable y so that $P_G(x, 0) = P_G(x)$

The Tutte polynomial

▶ Here is an algorithm to compute $P_G(x, y) =$ Tutte polynomial

• Starting condition $P_{tree}(x, y) = x^{\#vertices-1}$ and $P_{loop}(x, y) = y$

► Then use deletion-contraction : $P_G(x, y) = P_{G \setminus e}(x, y) + P_{G/e}(x, y)$

Ok, this one is a bit annoying...

• What one should keep in mind is chromatic(x) = Tutte(x,0)

► However, that is not quite correct

• Correct: chromatic(x) = $(-1)^{s}x^{t}$ Tutte(x-1,0) with explicit s, t

There exists a polynomial $T_G(x, y)$ associated to a graph such that:

- $T_G(2,1) = \#$ forests
- $T_G(1,1) = \#$ spanning forests
- $T_G(1,2) = \#$ spanning subgraphs
- More...
- ► The polynomial is called Tutte polynomial
- ▶ Also we have the specialization "chromatic(x) = Tutte(x,0)", and more

Tutte knows knots

- Step 1 Checkerboard color and alternating knot K
- Step 2 Create the dual graph G(K)
 - Step 3 $P_{G(K)}(-x, -1/x)$ is the Jones polynomial of K up to scaling

Thank you for your attention!

I hope that was of some help.