What is...the Tutte polynomial?

Or: More counting!

The chromatic polynomial

- Recall that a way to define the chromatic polynomial was deletion-contraction
- Here we kill loops since loops rule out colorings
- Idea Keep the loops, give them the variable y so that $P_{G}(x, 0)=P_{G}(x)$

The Tutte polynomial

- Here is an algorithm to compute $P_{G}(x, y)=$ Tutte polynomial
- Starting condition $P_{\text {tree }}(x, y)=x^{\# \text { vertices-1 }}$ and $P_{\text {loop }}(x, y)=y$
- Then use deletion-contraction : $P_{G}(x, y)=P_{G \backslash e}(x, y)+P_{G / e}(x, y)$

Ok, this one is a bit annoying...

The chromatic polynomial drawn in the Tutte plane

- What one should keep in mind is chromatic $(x)=\operatorname{Tutte}(x, 0)$
- However, that is not quite correct
- Correct: chromatic $(\mathrm{x})=(-1)^{5} x^{t} \operatorname{Tutte}(\mathrm{x}-1,0)$ with explicit s, t

For completeness: A formal statement

There exists a polynomial $T_{G}(x, y)$ associated to a graph such that:

- $T_{G}(2,1)=\#$ forests
- $T_{G}(1,1)=\#$ spanning forests
- $T_{G}(1,2)=\#$ spanning subgraphs
- More...
- The polynomial is called Tutte polynomial
- Also we have the specialization "chromatic $(x)=\operatorname{Tutte}(x, 0)$ ", and more

Potts partition function

Tutte knows knots

- Step 1 Checkerboard color and alternating knot K
- Step 2 Create the dual graph $G(K)$
- Step $3 P_{G(K)}(-x,-1 / x)$ is the Jones polynomial of K up to scaling

Thank you for your attention!

I hope that was of some help.

