What is...chromatic detection?

Or: Determined by colorings

Counting colorings - reminder

3-coloring:

- Recall that the chromatic polynomial $P_{G}(x)$ counts graph colorings
- It is a graph invariant i.e. $(G \cong H) \Rightarrow\left(P_{G}(x)=P_{H}(x)\right)$
- Question What about the converse?

- All the above graphs have twenty-four 3-colorings
- All of them have $P_{G}(x)=(x-2)(x-1)^{3} x$
- They are nonisomorphic

Well, something is true

- There are 34 graphs with 5 vertices see above
- Only the cycle has chromatic polynomial $x(x-1)(x-2)\left(x^{2}-2 x+2\right)$
- Only the complete graph has chromatic polynomial $x(x-1)(x-2)(x-3)(x-4)$

For completeness: A formal statement

Cycles and Turán graphs are chromatically unique

(1,1)-Turän graph singleton graph				
(2,1)-Turân graph 2-empty graph	(2,2)-Turán graph 2-path graph			
(3,1)-Turän graph 3-empty graph	(3,2)-Turản graph 3-path graph	(3,3)-Turán graph triangle graph		
(4,1)-Turán graph 4-empty graph	(4,2)-Turán graph square graph	(4,3)-Turăn graph diamond graph	(4,4)-Turán graph tetrahedral graph	
(5,1)-Turön graph 5-empty graph	(5.2)-Turăn graph (2,3)-complete bipartite graph	(5,3)-Turän graph 5-wheel graph	(5,4)-Turän graph Johnson solid skeleton 12	(5,5)-Turán graph pentatope graph

- Chromatically unique (cu) is $(G \cong H) \Leftarrow\left(P_{G}(x)=P_{H}(x)\right)$
- $\# V_{G} \neq \# V_{H}$ implies $P_{G}(x) \neq P_{H}(x)$, so that part is boring
- Turán graphs include : complete (plain, bipartite or tripartite) and empty graphs

Most graphs are not cu

- There are many more families of cu graphs, but the overall number is (probably) small
- Above the ratio cu graphs/all graphs on n vertices
- I am not aware of any formal statement

Thank you for your attention!

I hope that was of some help.

