What are...graph polynomials?

Or: Easy problems, not hard problems

Easy and hard

Oversimplified and whatever that means, graph theory is divided into:

- Easy and difficult problems
- Tasty and untasty problems

Spectral approach

- So far we have seen the spectral approach
- This is designed to tackle difficult problems approximately
- Spectral graph theory usually gives bounds or asymptotics

Polynomial approach

- We will see the polynomial approach
- This is designed to tackle easy problems nicely
- Polynomials usually give short and sweet explanations why something is easy

For completeness: A formal statement

There exists a polynomial $T_{G}(x, y)$ associated to a graph such that:

- $T_{G}(2,1)=\#$ forests
- $T_{G}(1,1)=\#$ spanning forests
- $T_{G}(1,2)=\#$ spanning subgraphs
- More...
- The polynomial is called Tutte polynomial
- This "immediately" shows that counting e.g. spanning forest is easy

It gets even better

- $T_{G}(x, y)$ can be defined by a recursive formula (above)
- $T_{G}(x, y)$ can be defined by a closed formula
- $T_{G}(x, y)$ can be defined using the Potts model
- More

Thank you for your attention!

I hope that was of some help.

