Or: Easy problems, not hard problems



Easy and hard
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Oversimplified and whatever that means, graph theory is divided into:

» Easy and difficult problems

» Tasty and untasty problems



Spectral approach
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» So far we have seen the spectral approach
» This is designed to tackle difficult problems approximately

» Spectral graph theory usually gives | bounds or asymptotics



Polynomial approach
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» We will see the [polynomial approach
» This is designed to tackle easy problems nicely

» Polynomials usually give [short and sweet explanations why something is easy



For completeness: A formal statement

There exists a |polynomial T¢(x,y) associated to a graph such that:
Tc(2,1) = # forests
Tc(1,1) = # spanning forests
Tc(1,2) = # spanning subgraphs
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More...

» The polynomial is called Tutte polynomial
» This “immediately” shows that counting e.g. spanning forest is easy

wsv  Poly. approach

preses

DIFACULT =——

POPRAWTES s




It gets even better
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» Ts(x,y) can be defined by a |recursive formula (above)
» Tc(x,y) can be defined by a closed formula

» Ts(x,y) can be defined using the | Potts model

> More.



| hope that was of some help.



