What is...graph drawing?

Or: The Laplacian draws graphs

One graph, many drawings

- A graph is an abstract object that lives nowhere
- However, graph theory lives from illustrations
- Question How to draw a graph in a "good" way?

Graph drawings mathematically

- Graph drawing $=\rho: V \rightarrow \mathbb{R}^{m}$ for $m \leq n$, where $G=(V, E)$ with $\# V=n$
- Imagine a physical model of G with vertices in \mathbb{R}^{m} connected by springs
- Definition A good drawing is one where the springs are less extended

Minimizing energy

- Energy $E=\sum_{\{a, b\} \in E}|\rho(a)-\rho(b)|^{2}$
- Minimize the energy! (Classical slogan that works here as well)
- We add some extra conditions to rule out silly solutions

For completeness: A formal statement

For $R=(\rho(v))_{v \in V}$ (the drawing matrix) we have

$$
E=\operatorname{tr}\left(R^{T} L R\right)
$$

Thus: Minimizing energy anc use the Laplacian The minimal energy of any balanced orthogonal graph drawing and a realizing R are equal to

$$
\mu_{-2}+\ldots+\mu_{-2+m+1}, \quad R=\left(u_{-2} \ldots u_{-2+m+1}\right)
$$

for the corresponding normalized Laplace eigenvectors u_{i}

- This works extremely well!
- Balanced $=$ the sum of every column is zero; orthogonal $=R$ is orthogonal
- We do an example on the next slide

An example

- G has adjacency matrix $A=(0110 ; 1001 ; 1001 ; 0110)$, we want to draw in \mathbb{R}^{2}
- We have $u_{-2}=1 / \sqrt{2}(-1,0,0,1)$ and $u_{-1}=1 / \sqrt{2}(0,-1,1,0), 1 / \sqrt{2} \approx 0.707$
- We get the above picture : $R=1 / \sqrt{2}(-1,0,0,1 ; 0,-1,1,0)$

Thank you for your attention!

I hope that was of some help.

