What is...the Laplace matrix?

Or: Taking the degree into account

The adjacency and degree matrices

▶ The adjacency matrix A(G) encodes the connectivity of the graph G

• The degree matrix D(G) is the diagonal matrix of vertex degrees

► Idea Put them together!

The Laplace matrix

► The Laplace matrix is L(G) = D(G) - A(G); the Laplace spectrum is $LS(G) = \{\mu_1 \ge ... \ge \mu_n\}$

▶ It not a priori clear why this should give anything beyond the usual spectrum

Spoiler LS(G) is great ;-)

An example

▶ The eigenvectors are also illustrated

Let d_v be the degree of the vertex v, then

$$\sum_{i=1}^{t} \mu_i \le \sum_{i=1}^{t} \#\{v | d_v \ge i\}$$

holds for all t = 1, ..., n Bound using the degree

- ▶ There are many more numerical facts about *LS*
- ▶ Here is a comparison for small graphs; Laplacian is on the right :

1.1 ●	0	0
2.1 ●─●	1, -1	0, 2
2.2 • •	0, 0	0, 0
3.1	2, -1, -1	0,3,3
3.2	$\sqrt{2}, 0, -\sqrt{2}$	0,1,3
3.3	1, 0, -1	0, 0, 2
3.4	0, 0, 0	0, 0, 0

Fig. 3.2 Graph with 2nd Laplace eigenvector

► Say we want to cheaply cut a graph into two large pieces

► Trick that often works Take $\mu_{-2} = \mu_{n-1}$ and its eigenvector; where the eigenvector changes signs is a good place to cut (details omitted)

Thank you for your attention!

I hope that was of some help.