What is...the Laplace matrix?

Or: Taking the degree into account

The adjacency and degree matrices

- The adjacency matrix $A(G)$ encodes the connectivity of the graph G
- The degree matrix $D(G)$ is the diagonal matrix of vertex degrees
- Idea Put them together!

6

- The Laplace matrix is $L(G)=D(G)-A(G)$; the Laplace spectrum is $L S(G)=\left\{\mu_{1} \geq \ldots \geq \mu_{n}\right\}$
- It not a priori clear why this should give anything beyond the usual spectrum
- Spoiler $L S(G)$ is great ;-)

An example

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \quad S=\{\sqrt{2}, 0,-\sqrt{2}\}
$$

- The Line graph has the above $A(G)$ and $L(G)$
- The eigenvectors are also illustrated

For completeness: A formal statement

Let d_{v} be the degree of the vertex v, then

$$
\sum_{i=1}^{t} \mu_{i} \leq \sum_{i=1}^{t} \#\left\{v \mid d_{v} \geq i\right\}
$$

holds for all $t=1, \ldots, n$ Bound using the degree

- There are many more numerical facts about $L S$
- Here is a comparison for small graphs; Laplacian is on the right :

1.1	0	0
$2.1 \bullet \bullet$	$1,-1$	0,2
$2.2 \bullet \bullet$	0,0	0,0
$3.1 \bullet$	$2,-1,-1$	$0,3,3$
$3.2 \bullet$	$\sqrt{2}, 0,-\sqrt{2}$	$0,1,3$
$3.3 \bullet$	$1,0,-1$	$0,0,2$
$3.4 \bullet$	$0,0,0$	$0,0,0$

A first application

Fig. 3.2 Graph with 2nd Laplace eigenvector

- Say we want to cheaply cut a graph into two large pieces
- Trick that often works Take $\mu_{-2}=\mu_{n-1}$ and its eigenvector; where the eigenvector changes signs is a good place to cut (details omitted)

Thank you for your attention!

I hope that was of some help.

