What is...the classification of abelian groups?

Or: Factoring numbers.

Can one classify groups? Well...

Alm	ost all	groups are	not	abeliar	n, but it ta	kes a while to get started	d:
	Order All 1 1 2 1 3 1			Abelian	Ratio		
			1 1 1		1	1	
					1	1	
					1	1	
	4		2		2	1	
	5 1 6 2 7 1 8 5 9 2 256 5609		1 2		1	1	
					1	0.5	
			1		1	1	
			5		3	0.6	
			2		2	1	
			÷		÷	÷	
			6092		22	≈0.0004	
			:		-	:	
	2048	Unknow	ו (in	2021)	56	Unknown (in 2021)	
	÷		:			:	

Chinese reminder theorem

 $n \equiv 2 \mod 3$ $n \equiv 3 \mod 5$ $n \equiv 2 \mod 7$

Theorem. There is only one solution *n* between $0 \le n \le 3 \cdot 5 \cdot 7$

Caution. You need to have that 3, 5 and 7 are coprime, e.g.

 $n \equiv 2 \mod 4$ $n \equiv 2 \mod 8$

has solutions 2, 10, 18 and 26 below $4 \cdot 8 = 32$

Fundamental examples of abelian groups

The "only" abelian groups are:

Infinite: \mathbb{Z} , Finite: $\mathbb{Z}/p^k\mathbb{Z}$, p prime

Chinese reminder theorem gives:

- $\begin{array}{ccc} \mathbb{Z}/1\mathbb{Z} & 1 \\ \mathbb{Z}/2\mathbb{Z} & 1 \\ \mathbb{Z}/3\mathbb{Z} & 1 \\ \mathbb{Z}/4\mathbb{Z} \not\cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} & 2 \\ \mathbb{Z}/5\mathbb{Z} & 1 \\ \mathbb{Z}/6\mathbb{Z} \xrightarrow{\cong} \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}, 1 \mapsto (1,1) & 1 \end{array}$
 - $\mathbb{Z}/7\mathbb{Z}$ 1
- $\mathbb{Z}/8\mathbb{Z} \cong \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \quad \mathbf{3}$

For any finitely generated abelian group G there exist r and (not necessary distinct) prime powers $q_1, ..., q_s$ such that

$$G \cong \underbrace{\mathbb{Z} \times \ldots \times \mathbb{Z}}_{r \text{ copies}} \times \mathbb{Z}/q_1 \mathbb{Z} \times \ldots \times \mathbb{Z}/q_s \mathbb{Z} \quad \text{Existence}$$

(a) r and $q_1, ..., q_s$ are (up to renaming) uniquely determined by G Uniqueness

- (b) r is called the rank
- (c) This classifies finitely generated abelian groups
- (d) To count their number for a given order is easy Cool!

The finitely generated condition is essential here – for *e.g.* \mathbb{Q} the above fails

Almost all groups are not abelian?

Thank you for your attention!

I hope that was of some help.