What is...the classification of abelian groups?

Or: Factoring numbers.

Can one classify groups? Well...

Almost all groups are not abelian, but it takes a while to get started:

Order	All	Abelian	Ratio
1	1	1	1
2	1	1	1
3	1	1	1
4	2	2	1
5	1	1	1
6	2	1	0.5
7	1	1	1
8	5	3	0.6
9	2	2	1
\vdots	\vdots	\vdots	\vdots
256	56092	22	≈ 0.0004
\vdots	\vdots	\vdots	\vdots
2048	Unknown (in 2021)	56	Unknown (in 2021)
\vdots	\vdots	\vdots	\vdots

Chinese reminder theorem

There are certain things whose number is unknown.
If we count them by threes, we have two left over;
by fives, we have three left over; and by sevens, two are left over. How many

$$
\text { things are there? Sun-tzu } \sim 3 r d \text { century }
$$

$$
n \equiv 2 \bmod 3 n \equiv 3 \bmod 5 n \equiv 2 \bmod 7
$$

Theorem. There is only one solution n between $0 \leq n \leq 3 \cdot 5 \cdot 7$

Caution. You need to have that 3,5 and 7 are coprime, e.g.

$$
n \equiv 2 \bmod 4 n \equiv 2 \bmod 8
$$

has solutions $2,10,18$ and 26 below $4 \cdot 8=32$

Fundamental examples of abelian groups

The "only" abelian groups are:
Infinite: \mathbb{Z}, \quad Finite: $\mathbb{Z} / p^{k} \mathbb{Z}, \mathrm{p}$ prime

Chinese reminder theorem gives:

| $\mathbb{Z} / 1 \mathbb{Z}$ | 1 |
| ---: | ---: | ---: |
| $\mathbb{Z} / 2 \mathbb{Z}$ | 1 |
| $\mathbb{Z} / 3 \mathbb{Z}$ | 1 |
| $\mathbb{Z} / 4 \mathbb{Z} \neq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ | 2 |
| $\mathbb{Z} / 5 \mathbb{Z}$ | 1 |
| $\mathbb{Z} / 6 \mathbb{Z} \xrightarrow{\cong} \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}, 1 \mapsto(1,1)$ | 1 |
| $\mathbb{Z} / 7 \mathbb{Z}$ | 1 |
| $\mathbb{Z} / 8 \mathbb{Z} \nsubseteq \mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \nsubseteq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ | 3 |

For completeness: The formal statement

For any finitely generated abelian group G there exist r and (not necessary distinct) prime powers q_{1}, \ldots, q_{s} such that

$$
G \cong \underbrace{\mathbb{Z} \times \ldots \times \mathbb{Z}}_{r \text { copies }} \times \mathbb{Z} / q_{1} \mathbb{Z} \times \ldots \times \mathbb{Z} / q_{s} \mathbb{Z} \quad \text { Existence }
$$

(a) r and q_{1}, \ldots, q_{s} are (up to renaming) uniquely determined by G Uniqueness
(b) r is called the rank
(c) This classifies finitely generated abelian groups
(d) To count their number for a given order is easy Cool!

The finitely generated condition is essential here - for e.g. \mathbb{Q} the above fails

Almost all groups are not abelian?

Ratio

There is no hope to classify all finite groups...

Thank you for your attention!

I hope that was of some help.

