What are...the Sylow theorems?

Or: Canonical substructures?

The generating symmetries of a pentagon are a rotation a and a reflection b

 D_{10} is of order $|D_{10}| = 10 = 2 \cdot 5$

Subgroups of order 2?

Subgroups of order **5**?

There is one subgroup of order 5 So it is unique

G a finite group, $|G| = p^r m = \frac{p^r}{p}m$ with *p* prime, $p \neq m$. Then:

(a) For all $1 \leq s \leq r$ there exists a subgroup of order p^s

- (b) A subgroup of order p^r is called a p Sylow subgroup
- (c) All *p* Sylow subgroups are conjugate Uniqueness
- (d) The number n_p of p Sylow subgroups satisfies $n_p \div m$ and $p \div (n_p 1)$
- (e) A p Sylow subgroup is normal if and only if $n_p = 1$

The *p* Sylow subgroup is the (up to conjugation) **unique** end of a tower:

The symmetric group has a lot of non-conjugate subgroups:			
	Order	Number of subgroups	Number up to conjugacy
S_1	1	1	1
<i>S</i> ₂	2	2	2
<i>S</i> ₃	$6 = 2 \cdot 3$	6	4
<i>S</i> ₄	$24 = 2^2 \cdot 3$	30	11
S_5	$120 = 2^2 \cdot 3 \cdot 5$	156	19
S_6	$720=2^3\cdot 3^2\cdot 5$	1455	56
<i>S</i> ₇	$5040=2^3\cdot 3^2\cdot 5\cdot 7$	11300	96
<i>S</i> ₈	$40320=2^7\cdot 3^2\cdot 5\cdot 7$	151221	296

The uniqueness of the *p* Sylow subgroups is a very strong property

Thank you for your attention!

I hope that was of some help.