What is a...Cayley graph?

Or: Graphs and groups

Groups encoded efficiently

$\mathbb{Z} / 4 \mathbb{Z}$ (written additively):

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

1 is a generator of $\mathbb{Z} / 4 \mathbb{Z}$:

$$
\emptyset=0, \quad 1=1, \quad 11=1+1=2, \quad 111=1+1+1=3
$$

Illustrated as a graph:

Note that we need to illustrate different generators by different colors!

Catch. The graph depends on the chosen generators

$$
\leftrightarrow n \rightarrow S_{3}=\langle(1,2),(1,3,2)\rangle
$$

For completeness: A formal definition

For a group $G=\langle S\rangle$ the Cayley graph $\Gamma=\Gamma(G, S)$ is constructed by:
(a) The vertex set of Γ is G
(b) Each $s \in S$ is assigned a color s
(c) Draw an edge of color s from g to $g s$

- Generators with $s=s^{-1}$ correspond to double edges
- Cayley graphs are strongly connected
- G is commutative if and only if two-step-walks commute

Commutative

- Closed walks are relations among words Relations
- A group can thus be studied via its adjacency matrix Linear algebra

Cayley graphs of Sym(polygon) are polygons

F

Thank you for your attention!

I hope that was of some help.

