What are...solvable polynomials?

Or: Field and Galois theory, application 3

Finding explicit roots is tough

- ► Finding solutions to a quadratic equation is easy Completing the square
- ► Finding solutions to cubic or quartic equations is significantly harder

▶ Do we have any chance for degree \geq 5? Well...

Back to
$$\mathbb{Q}(\zeta = e^{2\pi i/3}, \sqrt[3]{2})$$

- ► The Galois group $G(\mathbb{Q}(\zeta, \sqrt[3]{2})/\mathbb{Q}) \cong S_3$ is not cyclic \mathbb{Q} misses ζ
- ► The Galois group $G(\mathbb{Q}(\zeta, \sqrt[3]{2})/\mathbb{Q}(\zeta)) \cong \mathbb{Z}/3\mathbb{Z}$ is cyclic $\mathbb{Q}(\zeta)$ has ζ

True in general! If the ground field \mathbb{K} has *n*th roots of unity, then:

- (a) The splitting field of $X^n a$ has a cyclic Galois group
- (b) For $G(\mathbb{L}/\mathbb{Q})$ cyclic $\exists a \in \mathbb{K}$ such that \mathbb{L} is the splitting field of $X^n a$

What if $G(\mathbb{L}/\mathbb{K}) \cong A_4$?

- ► Normal sequence $A_4 \triangleright V_4 \triangleright \mathbb{Z}/2\mathbb{Z} \triangleright 1$
- ► Successive cyclic quotients $A_4/V_4 \cong \mathbb{Z}/3\mathbb{Z}$, $V_4/\mathbb{Z}/2\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z}/1 \cong \mathbb{Z}/2\mathbb{Z}$
- ► Successive field extensions $\mathbb{Q} \subset \mathbb{Q}(2\cos(2\pi/9)) \subset \mathbb{Q}(\sqrt{-1+2\cos(2\pi/9)}) \subset \mathbb{Q}(\sqrt{-2-2\cos(2\pi/9)-2\sqrt{-1+2\cos(2\pi/9)^{-1}}})$

$$2\cos(2\pi/9) = \sqrt[3]{\zeta} + \sqrt[3]{\zeta}^{-1}$$
, $\zeta = e^{2\pi i/3}$

If \mathbb{L} is the splitting field of $f \in \mathbb{Q}[X]$, then

f is solvable $\Leftrightarrow G(\mathbb{L}/\mathbb{Q})$ is solvable

▶ A polynomial $f \in \mathbb{K}[X]$ is solvable if \exists field extensions

 $\mathbb{K} = \mathbb{K}_1 \subset \mathbb{K}_2 = \mathbb{K}_1(x_1) \subset ... \subset \mathbb{K}_n = \mathbb{K}_{n-1}(x_{n-1}), \quad x_i \text{ root of } X^{p_i} - a_i \in \mathbb{K}_i[X]$

with \mathbb{K}_n containing the splitting field of f Adjoining p_i th roots

▶ A (finite) group G is solvable if \exists normal sequence

$$G = G_1 \triangleright G_2 \triangleright ... \triangleright G_n, \quad G_{i+1}/G_i \cong \mathbb{Z}/p_i\mathbb{Z}$$

Adjoining p_i th roots group-theoretical

Thus, almost no $f \in \mathbb{Q}[X]$ is solvable

 $f = X^4 + 4 \cdot X^3 + 12 \cdot X^2 + 24 \cdot X + 24$ is solvable! $G(\mathbb{L}/\mathbb{Q}) \cong A_4$

► Normal sequence $A_4 \triangleright V_4 \triangleright \mathbb{Z}/2\mathbb{Z} \triangleright 1$

► Successive cyclic quotients $A_4/V_4 \cong \mathbb{Z}/3\mathbb{Z}$, $V_4/\mathbb{Z}/2\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z}/1 \cong \mathbb{Z}/2\mathbb{Z}$

► Successive field extensions $\mathbb{Q} \subset \mathbb{Q}(\cos(2\pi/9)) \subset \mathbb{Q}(\sqrt{-1 + \cos(2\pi/9)}) \subset \mathbb{Q}(\sqrt{-2(1 + \cos(2\pi/9) + \sqrt{-1 + 2\cos(2\pi/9)^{-1}})})$ Thank you for your attention!

I hope that was of some help.