What are...solvable polynomials?

Or: Field and Galois theory, application 3

Finding explicit roots is tough

- Finding solutions to a quadratic equation is easy
- Finding solutions to cubic or quartic equations is

Completing the square significantly harder

- Do we have any chance for degree ≥ 5 ? Well..

Back to $\mathbb{Q}\left(\zeta=e^{2 \pi i / 3}, \sqrt[3]{2}\right)$

- The Galois group $G(\mathbb{Q}(\zeta, \sqrt[3]{2}) / \mathbb{Q}) \cong S_{3}$ is not cyclic \mathbb{Q} misses ζ
- The Galois group $G(\mathbb{Q}(\zeta, \sqrt[3]{2}) / \mathbb{Q}(\zeta)) \cong \mathbb{Z} / 3 \mathbb{Z}$ is cyclic $\mathbb{Q}(\zeta)$ has ζ

True in general! If the ground field \mathbb{K} has nth roots of unity, then:
(a) The splitting field of $X^{n}-a$ has a cyclic Galois group
(b) For $G(\mathbb{L} / \mathbb{Q})$ cyclic $\exists a \in \mathbb{K}$ such that \mathbb{L} is the splitting field of $X^{n}-a$

What if $G(\mathbb{L} / \mathbb{K}) \cong A_{4}$?

- Normal sequence $A_{4} \triangleright V_{4} \triangleright \mathbb{Z} / 2 \mathbb{Z} \triangleright 1$
- Successive cyclic quotients

$$
A_{4} / V_{4} \cong \mathbb{Z} / 3 \mathbb{Z}, \quad V_{4} / \mathbb{Z} / 2 \mathbb{Z} \cong \mathbb{Z} / 2 \mathbb{Z}, \quad \mathbb{Z} / 2 \mathbb{Z} / 1 \cong \mathbb{Z} / 2 \mathbb{Z}
$$

- Successive field extensions
$\mathbb{Q} \subset \mathbb{Q}(2 \cos (2 \pi / 9)) \subset \mathbb{Q}(\sqrt{-1+2 \cos (2 \pi / 9)}) \subset \mathbb{Q}\left(\sqrt{-2-2 \cos (2 \pi / 9)-2 \sqrt{-1+2 \cos (2 \pi / 9)^{-1}}}\right)$

$$
2 \cos (2 \pi / 9)=\sqrt[3]{\zeta}+\sqrt[3]{\zeta}^{-1}, \zeta=e^{2 \pi i / 3}
$$

For completeness: The formal statement

If \mathbb{L} is the splitting field of $f \in \mathbb{Q}[X]$, then

$$
f \text { is solvable } \Leftrightarrow G(\mathbb{L} / \mathbb{Q}) \text { is solvable }
$$

- A polynomial $f \in \mathbb{K}[X]$ is solvable if \exists field extensions

$$
\mathbb{K}=\mathbb{K}_{1} \subset \mathbb{K}_{2}=\mathbb{K}_{1}\left(x_{1}\right) \subset \ldots \subset \mathbb{K}_{n}=\mathbb{K}_{n-1}\left(x_{n-1}\right), \quad x_{i} \text { root of } X^{p_{i}}-a_{i} \in \mathbb{K}_{i}[X]
$$

with \mathbb{K}_{n} containing the splitting field of f Adjoining p_{i} th roots

- A (finite) group G is solvable if \exists normal sequence

$$
G=G_{1} \triangleright G_{2} \triangleright \ldots \triangleright G_{n}, \quad G_{i+1} / G_{i} \cong \mathbb{Z} / p_{i} \mathbb{Z}
$$

Adjoining p_{i} th roots group-theoretical

Thus, almost no $f \in \mathbb{Q}[X]$ is solvable

$$
f=X^{4}+4 \cdot X^{3}+12 \cdot X^{2}+24 \cdot X+24 \text { is solvable! } G(\mathbb{L} / \mathbb{Q}) \cong A_{4}
$$

roots: $-1 \pm \sqrt{-1+2 \cos (2 \pi / 9)} \pm \sqrt{-2\left(1+\cos (2 \pi / 9)+\sqrt{-1+2 \cos (2 \pi / 9)}^{-1}\right)}$

- Normal sequence $A_{4} \triangleright V_{4} \triangleright \mathbb{Z} / 2 \mathbb{Z} \triangleright 1$
- Successive cyclic quotients

$$
A_{4} / V_{4} \cong \mathbb{Z} / 3 \mathbb{Z}, \quad V_{4} / \mathbb{Z} / 2 \mathbb{Z} \cong \mathbb{Z} / 2 \mathbb{Z}, \quad \mathbb{Z} / 2 \mathbb{Z} / 1 \cong \mathbb{Z} / 2 \mathbb{Z}
$$

- Successive field extensions

$$
\mathbb{Q} \subset \mathbb{Q}(\cos (2 \pi / 9)) \subset \mathbb{Q}(\sqrt{-1+\cos (2 \pi / 9)}) \subset \mathbb{Q}\left(\sqrt{-2\left(1+\cos (2 \pi / 9)+\sqrt{-1+2 \cos (2 \pi / 9)^{-1}}\right)}\right)
$$

Thank you for your attention!

I hope that was of some help.

