What is...the Kronecker-Weber theorem?

Or: Field and Galois theory, application 2

Encircled polygons

- Complex k th roots of unity are of the form $e^{j \cdot 2 \pi i / k}$ All
- The primitive ones are of the form $e^{j \cdot 2 \pi i / k}$ for $\operatorname{gcd}(j, k)=1$ Generators

- $\mathbb{Q}\left(\zeta_{k}=e^{2 \pi i / k}\right)$ is the splitting field of $X^{k}-1$
- $\mathbb{Q}\left(\zeta_{k}\right)$ is Galois over \mathbb{Q} with

$$
G\left(\mathbb{Q}\left(\zeta_{k}\right) / \mathbb{Q}\right) \cong(\mathbb{Z} / n \mathbb{Z})^{*}=\{a \text { with } \operatorname{gcd}(a, k)=1\},\left(\zeta_{k} \mapsto \zeta_{k}^{a}\right) \leftrightarrow a
$$

- $\mathrm{RoU} \Rightarrow$ abelian The Galois group of a roots of unity is abelian

Weird coincidences

- $X^{2}-5$ has Galois group $G(\mathbb{Q}(\sqrt{5}) / \mathbb{Q}) \cong \mathbb{Z} / 2 \mathbb{Z}$ and

$$
\sqrt{5}=e^{2 \pi i / 5}-e^{2 \cdot 2 \pi i / 5}-e^{3 \cdot 2 \pi i / 5}+e^{4 \cdot 2 \pi i / 5}
$$

- $X^{2}+7$ has Galois group $G(\mathbb{Q}(i, \sqrt{7}) / \mathbb{Q}) \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ and

$$
\sqrt{-7}=2 \cdot\left(e^{2 \pi i / 7}+e^{2 \cdot 2 \pi i / 7}+e^{4 \cdot 2 \pi i / 7}\right)+1
$$

For completeness: The formal statement

The union of all $\mathbb{Q}\left(\zeta_{k}\right)$ is the maximal abelian field extension of \mathbb{Q}, or equivalently
every finite Galois extension of \mathbb{Q} with abelian $G(\mathbb{L} / \mathbb{Q})$ is contained in some $\mathbb{Q}\left(\zeta_{k}\right)$

```
RoU }\Leftrightarrow\mathrm{ abelian
```

- Every $\sqrt{ \pm n}$ is a linear combination of some ζ_{k}^{a}
- Ditto for every algebraic integer with abelian Galois group
- Kronecker's Jugendtraum (a.k.a. Hilbert's twelfth problem): is this still true if \mathbb{Q} is replaced ny any number field? Still open in 2021

Es handelt sich um meinen liebsten Jugendtraum, nämlich um den Nachweis, dass die Abel'schen Gleichungen mit Quadratwurzeln rationaler Zahlen durch die Transformations-Gleichungen elliptischer Functionen mit singularen Moduln grade so erschöpft werden, wie die ganzzahligen Abel'schen Gleichungen durch die Kreisteilungsgleichungen.
Kronecker in a letter to Dedekind in 1880 reproduced in volume V of his collected works, page 455

This is also a no-go theorem


```
Permutation group G acting on a set of cardinality 4
```

Order $=4=2^{\wedge} 2$
$(1,4)(2,3)$
(1, 2, 4, 3)

Calculations are restricted to 120 seconds.
Input is limited to 50000 bytes.
Running Magma V2.26-4.
Seed: 4251428783 ; Total time: 0.110 seconds; Total memory usage: 32.09MB.

- The polynomial $X^{4}-4 \cdot X^{2}+2$ has splitting field $\mathbb{Q}(\sqrt{2+\sqrt{2}})$ with

$$
G(\mathbb{Q}(\sqrt{2+\sqrt{2}}) / \mathbb{Q}) \cong \mathbb{Z} / 4 \mathbb{Z}
$$

So $\sqrt{2+\sqrt{2}}$ "is" a root of unity See above

- The polynomial $X^{4}-5 \cdot X^{2}+2$ has splitting field \mathbb{L} with

$$
G(\mathbb{L} / \mathbb{Q}) \cong D_{8}
$$

So its roots, e.g. $\sqrt{\frac{1}{2}(5+\sqrt{17})}$, "are" not roots of unity Try yourself

Thank you for your attention!

I hope that was of some help.

