What are...the limits of straightedge and compass?

Or: Field and Galois theory, application 1

The rules of the game

- Start with $\{0,1\} \subset M \subset \mathbb{R}^{2} \cong \mathbb{C}$ Initialization
- We can construct lines containing two points from M Straightedge
- We can construct circles with center and another point from M Compass
- We can increase M successively by points obtained via intersecting constructed lines/circles Game step

How is this algebra?

Lemma. \hat{M}, containing all points constructible from M, satisfies:

- $i \in \hat{M}$
- $a \in \hat{M}$ implies that $|a|, \Re(a), \Im(a)$ and \bar{a} are in \hat{M}
- $a, b \in \hat{M}$ implies $a+b \in \hat{M}$ and $-a \in \hat{M}$
- $a, b \in \hat{M}$ implies $a \cdot b \in \hat{M}$ and $a / b \in \hat{M}($ if $b \neq 0)$

Constructible points form a "quadratic subfield" of \mathbb{C}

Lemma. \hat{M}, containing all points constructible from M, is quadratically closed

- $a \in \hat{M}$ implies $\sqrt{a} \in \hat{M}$

- Conversely, any constructible point can be obtained by the operations ,,$+- \times, \div$ and iterated $\sqrt{-}$

Thus, for $\mathbb{K}=\mathbb{Q}(M \cup \bar{M})$ we have $[\mathbb{K}(z): \mathbb{K}]=2^{d}$ for some d A power of 2

For completeness: The formal statement

$$
\text { Let } \mathbb{K}=\mathbb{Q}(M \cup \bar{M}) \text { and } z \in \mathbb{C} \text {, then the following are equivalent }
$$

(a) $z \in \hat{M}$
(b) There are field extensions $\mathbb{K}=\mathbb{K}_{0} \subset \ldots \subset \mathbb{K}_{n} \subset \mathbb{C}$ with $z \in \mathbb{K}_{n}$ and $\left[\mathbb{K}_{i}: \mathbb{K}_{i-1}\right]=2$
(c) There is a Galois extension \mathbb{L} over \mathbb{K} with $z \in \mathbb{L}$ and $[\mathbb{L}: \mathbb{K}]=2^{d}$ for some d

- This shows that trisecting an angle, doubling the cube, squaring the circle etc. are impossible with straightedge and compass

- This also gives an effective criterion when the regular n-gon is constructible by straightedge and compass

Constructible polygons

Gauss-Wantzel The regular n-gon is constructible by straightedge and compass if and only if

$$
n=2^{d} \cdot p_{1} \cdot \ldots \cdot p_{k}
$$

for prime numbers p_{j} of the form $2^{2 j}+1$

- The $n=17$-gon works, as Gauss showed

$$
16 \cos \frac{2 \pi}{17}=-1+\sqrt{17}+\sqrt{34-2 \sqrt{17}}+2 \sqrt{17+3 \sqrt{17}-\sqrt{34-2 \sqrt{17}-2 \sqrt{34+2 \sqrt{17}}}}
$$

Thank you for your attention!

I hope that was of some help.

