What are...the limits of straightedge and compass?

Or: Field and Galois theory, application 1

The rules of the game

- ▶ Start with $\{0,1\} \subset M \subset \mathbb{R}^2 \cong \mathbb{C}$ Initialization
- \blacktriangleright We can construct lines containing two points from *M* Straightedge
- ▶ We can construct circles with center and another point from *M* Compass
- ► We can increase *M* successively by points obtained via intersecting constructed lines/circles Game step

Lemma. \hat{M} , containing all points constructible from M, satisfies: $\blacktriangleright i \in \hat{M}$

- ▶ $a \in \hat{M}$ implies that |a|, $\Re(a)$, $\Im(a)$ and \bar{a} are in \hat{M}
- ▶ $a, b \in \hat{M}$ implies $a + b \in \hat{M}$ and $-a \in \hat{M}$
- ▶ $a, b \in \hat{M}$ implies $a \cdot b \in \hat{M}$ and $a/b \in \hat{M}$ (if $b \neq 0$)

Main observation Constructible points form a subfield of $\ensuremath{\mathbb{C}}$

Lemma. \hat{M} , containing all points constructible from M, is quadratically closed : • $a \in \hat{M}$ implies $\sqrt{a} \in \hat{M}$

 \blacktriangleright Conversely , any constructible point can be obtained by the operations $+,-,\times,\div$ and iterated $\sqrt{-}$

Thus, for $\mathbb{K} = \mathbb{Q}(M \cup \overline{M})$ we have $[\mathbb{K}(z) : \mathbb{K}] = 2^d$ for some d A power of 2

Let $\mathbb{K} = \mathbb{Q}(M \cup \overline{M})$ and $z \in \mathbb{C}$, then the following are equivalent

(a) $z \in \hat{M}$

- (b) There are field extensions $\mathbb{K} = \mathbb{K}_0 \subset ... \subset \mathbb{K}_n \subset \mathbb{C}$ with $z \in \mathbb{K}_n$ and $[\mathbb{K}_i : \mathbb{K}_{i-1}] = 2$
- (c) There is a Galois extension $\mathbb L$ over $\mathbb K$ with $z \in \mathbb L$ and $[\mathbb L : \mathbb K] = 2^d$ for some d
 - ► This shows that trisecting an angle, doubling the cube, squaring the circle *etc.* are impossible with straightedge and compass

► This also gives an effective criterion when the regular *n*-gon is constructible by straightedge and compass

Constructible polygons

• Gauss—Wantzel The regular *n*-gon is constructible by straightedge and compass if and only if

$$n=2^d\cdot p_1\cdot\ldots\cdot p_k$$

for prime numbers p_i of the form $2^{2j} + 1$

▶ The n = 17-gon works, as Gauss showed

$$16\cos\frac{2\pi}{17} = -1 + \sqrt{17} + \sqrt{34 - 2\sqrt{17}} + 2\sqrt{17 + 3\sqrt{17}} - \sqrt{34 - 2\sqrt{17}} - 2\sqrt{34 + 2\sqrt{17}}$$

Thank you for your attention!

I hope that was of some help.