What are...the Galois groups of finite fields?

Or: Finite fields are easy

Freshman's dream

• A freshman dreams: $(X + Y)^q = X^q + Y^q$

► Common sense This is nonsense, you are missing the white bits

Frobenius Well, maybe not

The Frobenius endomorphism

Frobenius: This gives an automorphism $\sigma_q \colon \mathbb{F}_q \to \mathbb{F}_q, a \mapsto a^q$

For any $q' \ge q$, $\sigma_q \colon \mathbb{F}_{q'} \to \mathbb{F}_{q'}$, $a \mapsto a^q$ is an isomorphism

Example For $\mathbb{F}_3 = \mathbb{Z}/3\mathbb{Z}$ and $\mathbb{F}_{3^2} = \mathbb{F}_3[X]/(X^2 + X + 2 = 0)$, $\sigma_3 \colon \mathbb{F}_{3^2} \to \mathbb{F}_{3^2}$ is

0,0 0,1 0,2 1,0 1,1 1,2 2,0 2,1 2,2

This "matrix" has order 3

If $\mathbb L$ is an algebraic field extension over $\mathbb K=\mathbb F_q$ with $q=p^k$, then:

(a) \mathbb{L} is Galois over \mathbb{K} Always!

(b) The Galois group $G(\mathbb{L}/\mathbb{K}) = \operatorname{Aut}(\mathbb{L}/\mathbb{K})$ is cyclic $G(\mathbb{L}/\mathbb{K}) \cong \mathbb{Z}/[\mathbb{L} : \mathbb{K}]\mathbb{Z}$

(c) We have $G(\mathbb{L}/\mathbb{K}) = \langle \sigma_q \rangle$ Generated by the Frobenius automorphism

For comparison, \mathbb{Q} is more complicated :

- \blacktriangleright Not every algebraic \mathbbm{L} over \mathbbm{Q} is Galois
- The Galois group $G(\mathbb{L}/\mathbb{Q})$ is rarely cyclic:

 $\frac{|\text{polynomials of degree} \leq d \text{ with coefficients bounded by } N|}{|\text{ditto} + \text{Galois group being } S_d|} \xrightarrow{N \to \infty} 1$

▶ The Galois group $G(\mathbb{L}/\mathbb{Q})$ is rarely generated by a nice element

Solving polynomial equations over finite fields

- ▶ p(X) = 0 has a solution in $\mathbb{F}_q \Leftrightarrow \operatorname{gcd}(p, X^q X) \neq 1$ Surprisingly easy
- ► There is a nice and efficient algorithm to factor polynomials over F_q Berlekamp's algorithm

Catch Freshman's dream implies that there are no primitive qth roots of unity

Thank you for your attention!

I hope that was of some help.