What is...the fundamental theorem of Galois theory?

Or: From roots to groups and back

S_{3} and its subgroup lattice

- S_{3} has six subgroups, four up to conjugacy Green left-right arrow
- A copy of $\mathbb{Z} / 3 \mathbb{Z}$ of index 2
- Three copies of $\mathbb{Z} / 2 \mathbb{Z}$ of index 3
- $\mathbb{Z} / 3 \mathbb{Z}$ is normal, the three copies of $\mathbb{Z} / 2 \mathbb{Z}$ are not

We have seen this is for roots of polynomials

$$
\mathbb{Q}\left(\zeta=e^{2 \pi i / 3}, \sqrt[3]{2}\right) \text { and its subfield lattice }
$$

- $\mathbb{Q}(\zeta, \sqrt[3]{2})$ has six subfields, four up $\operatorname{Aut}(\mathbb{Q}(\zeta, \sqrt[3]{2}) / \mathbb{Q})$ Green left-right arrow
- A copy of $\mathbb{Q}(\zeta)$ of degree 3
- Three copies of $\mathbb{Q}(\sqrt[3]{2})$ of degree 2
- $\mathbb{Q}(\zeta)$ is Galois over \mathbb{Q}, the three copies of $\mathbb{Q}(\sqrt[3]{2})$ are not

Main observation This is the same as for S_{3}, but upside down

A direct comparison

(a) On the subgroup side this is clear since

$$
\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}=\{(0,0),(1,0),(1,1),(0,1)\}
$$

(b) On the subfield side this is not so obvious:

- $\operatorname{Aut}(\mathbb{Q}(\sqrt{2}, \sqrt{3}))=\{1, f, g, g f\}$ where

$$
f=\left\{\begin{array}{c}
\sqrt{2} \mapsto \sqrt{2} \\
\sqrt{3} \mapsto-\sqrt{3}
\end{array}, \quad g=\left\{\begin{array}{c}
\sqrt{2} \mapsto-\sqrt{2} \\
\sqrt{3} \mapsto \sqrt{3}
\end{array}\right.\right.
$$

- The fixed field of f is $\mathbb{Q}(\sqrt{2})$, the fixed field of g is $\mathbb{Q}(\sqrt{3})$ and the fixed field of $g f$ is $\mathbb{Q}(\sqrt{6}=\sqrt{2} \cdot \sqrt{3})$
- There are no other subfields

For completeness: The formal statement

If \mathbb{L} is Galois over \mathbb{K} with Galois group $G(\mathbb{L} / \mathbb{K})=\operatorname{Aut}(\mathbb{L} / \mathbb{K})$, then:
(a) \mathbb{L} is Galois over any $\mathbb{K} \subset$ subfields $Z \subset \mathbb{L}$
(b) There are inverse bijections, the Galois correspondences:
$\{\mathbb{K} \subset$ subfields $Z \subset \mathbb{L}\} \stackrel{\cong}{\cong}\{$ subgroups of $G(\mathbb{L} / \mathbb{K})\}, Z \mapsto G(\mathbb{L} / Z)$ $\{$ subgroups H of $G(\mathbb{L} / \mathbb{K})\} \xrightarrow{\cong}\{\mathbb{K} \subset$ subfields $Z \subset \mathbb{L}\}, H \mapsto \mathbb{L}^{H}$
(c) $\left(Z \subset Z^{\prime}\right) \Leftrightarrow\left(G\left(\mathbb{L} / Z^{\prime}\right) \subset G(\mathbb{L} / Z)\right)$ Upside down
(d) $[Z: \mathbb{K}]=|G(\mathbb{L} / \mathbb{K})| /|G(\mathbb{L} / Z)|$ (whenever this make sense) Order and index
(e) $(Z$ is Galois over $\mathbb{K}) \Leftrightarrow(G(\mathbb{L} / Z) \triangleleft G(\mathbb{L} / \mathbb{K})$ is normal) Galois and normal

- The Galois correspondence for \mathbb{L} not Galois over \mathbb{K} still works, but is only surjective respectively injective

S_{4} vs. explicit roots

- 30 subgroups (black dots), 11 up to conjugacy (gray rectangles - space indicates different conjugacy classes), only $A_{4},\left(C_{2}\right)^{2}$ and 1 are normal
- Homework. Do the same for $\mathbb{Q}\left(\right.$ roots of $\left.X^{4}+X+1\right)$;-)

Thank you for your attention!

I hope that was of some help.

