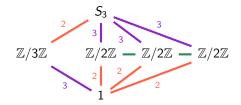
What is...the fundamental theorem of Galois theory?

Or: From roots to groups and back

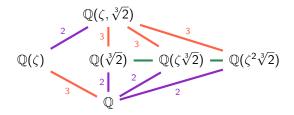
S_3 and its subgroup lattice



- ► S_3 has six subgroups, four up to conjugacy Green left-right arrow
- ► A copy of $\mathbb{Z}/3\mathbb{Z}$ of index 2
- ▶ Three copies of $\mathbb{Z}/2\mathbb{Z}$ of index 3
- $\blacktriangleright~\mathbb{Z}/3\mathbb{Z}$ is normal, the three copies of $\mathbb{Z}/2\mathbb{Z}$ are not

We have seen this is for roots of polynomials

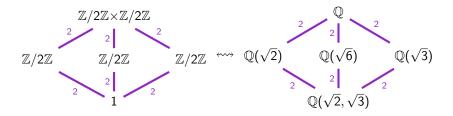
$\mathbb{Q}(\zeta = e^{2\pi i/3}, \sqrt[3]{2})$ and its subfield lattice



- ▶ $\mathbb{Q}(\zeta, \sqrt[3]{2})$ has six subfields, four up $Aut(\mathbb{Q}(\zeta, \sqrt[3]{2})/\mathbb{Q})$ Green left-right arrow
- A copy of $\mathbb{Q}(\zeta)$ of degree 3
- Three copies of $\mathbb{Q}(\sqrt[3]{2})$ of degree 2
- ▶ $\mathbb{Q}(\zeta)$ is Galois over \mathbb{Q} , the three copies of $\mathbb{Q}(\sqrt[3]{2})$ are not

Main observation This is the same as for S_3 , but upside down

A direct comparison



(a) On the subgroup side this is clear since $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} = \{(0,0),(1,0),(1,1),(0,1)\}$

(b) On the subfield side this is not so obvious:

• $\operatorname{Aut}(\mathbb{Q}(\sqrt{2},\sqrt{3})) = \{1, f, g, gf\}$ where

$$f = \begin{cases} \sqrt{2} \mapsto \sqrt{2} \\ \sqrt{3} \mapsto -\sqrt{3} \end{cases}, \quad g = \begin{cases} \sqrt{2} \mapsto -\sqrt{2} \\ \sqrt{3} \mapsto \sqrt{3} \end{cases}$$

- The fixed field of f is Q(√2), the fixed field of g is Q(√3) and the fixed field of gf is Q(√6 = √2 ⋅ √3)
- There are no other subfields

If \mathbb{L} is Galois over \mathbb{K} with Galois group $G(\mathbb{L}/\mathbb{K}) = \operatorname{Aut}(\mathbb{L}/\mathbb{K})$, then: (a) \mathbb{L} is Galois over any $\mathbb{K} \subset$ subfields $Z \subset \mathbb{L}$

(b) There are inverse bijections, the Galois correspondences :

 $\{\mathbb{K} \subset \text{subfields } Z \subset \mathbb{L}\} \xrightarrow{\cong} \{\text{subgroups of } G(\mathbb{L}/\mathbb{K})\}, Z \mapsto G(\mathbb{L}/Z)$ $\{\text{subgroups } H \text{ of } G(\mathbb{L}/\mathbb{K})\} \xrightarrow{\cong} \{\mathbb{K} \subset \text{subfields } Z \subset \mathbb{L}\}, H \mapsto \mathbb{L}^H$

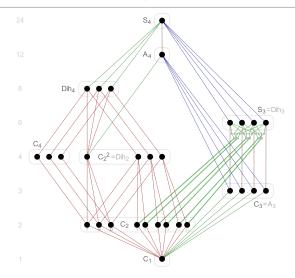
(c) $(Z \subset Z') \Leftrightarrow (G(\mathbb{L}/Z') \subset G(\mathbb{L}/Z))$ Upside down

(d) $[Z:\mathbb{K}] = |G(\mathbb{L}/\mathbb{K})|/|G(\mathbb{L}/Z)|$ (whenever this make sense) Order and index

(e) (Z is Galois over \mathbb{K}) \Leftrightarrow ($G(\mathbb{L}/Z) \triangleleft G(\mathbb{L}/\mathbb{K})$ is normal) Galois and normal

► The Galois correspondence for L not Galois over K still works, but is only surjective respectively injective

S₄ vs. explicit roots



- ➤ 30 subgroups (black dots), 11 up to conjugacy (gray rectangles space indicates different conjugacy classes), only A₄, (C₂)² and 1 are normal
- ▶ Homework. Do the same for $\mathbb{Q}(\text{roots of } X^4 + X + 1)$;-)

Thank you for your attention!

I hope that was of some help.